分析 由題意,$\int_{-1}^1{f(x){d_x}}$=${∫}_{-1}^{0}xdx$+${∫}_{0}^{1}\sqrt{1-{x}^{2}}dx$,即可得出結(jié)論.
解答 解:由題意,$\int_{-1}^1{f(x){d_x}}$=${∫}_{-1}^{0}xdx$+${∫}_{0}^{1}\sqrt{1-{x}^{2}}dx$=$\frac{1}{2}{x}^{2}{|}_{-1}^{0}$+$\frac{1}{4}π$=$\frac{1}{4}π$-$\frac{1}{2}$.
故答案為$\frac{1}{4}π$-$\frac{1}{2}$.
點評 本題考查定積分的計算,考查導(dǎo)數(shù)知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “若a2+b2+c2≥3,則a+b+c=3” | B. | “若a2+b2+c2<3,則a+b+c≠3” | ||
C. | “若a2+b2+c2≥3,則a+b+c≠3” | D. | “若a2+b2+c2<3,則a+b+c=3” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,2] | B. | [-1,0] | C. | [1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{2}$] | C. | [0,$\frac{1}{2}$] | D. | [0,$\frac{1}{3}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com