10.設(shè)曲線y=$\frac{x+1}{x-1}$在點(diǎn)(2,3)處的切線與直線ax+y+1=0平行,則a=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

分析 求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,再由兩直線平行的條件,即可得到a.

解答 解:y=$\frac{x+1}{x-1}$的導(dǎo)數(shù)為y′=$\frac{x-1-(x+1)}{(x-1)^{2}}$=$\frac{-2}{(x-1)^{2}}$,
則在點(diǎn)(2,3)處的切線斜率為:$\frac{-2}{(2-1)^{2}}$=-2,
由切線與直線ax+y+1=0平行,則-a=-2.可得a=2.
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:曲線在該點(diǎn)處的切線的斜率,考查兩直線平行的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\frac{{\sqrt{1-x}}}{{\sqrt{x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(0,1]C.(-∞,0)∪[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若f(x)=$\left\{{\begin{array}{l}x&{x∈[-1,0]}\\{\sqrt{1-{x^2}}}&{x∈(0,1]}\end{array}}$,則$\int_{-1}^1{f(x){d_x}}$=$\frac{1}{4}π$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點(diǎn),則異面直線PA與BE所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.?dāng)?shù)列{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),記Tn=a1+a2•4+a3•42+…+an•4n-1,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得5Tn-4n•an=( 。
A.nB.n2C.2n2D.n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下面的哪些對(duì)應(yīng)是從A到B的一一映射(  )
A.A={1,2,3,4},B={3,5,7},對(duì)應(yīng)關(guān)系:f(x)=2x+1,x∈A
B.A=R,B=R,對(duì)應(yīng)關(guān)系;f(x)=x2-1,x∈A
C.A={1,4,9},B={-1,1,-2,2,-3,3},對(duì)應(yīng)關(guān)系:A中的元素開(kāi)平方
D.A=R,B=R,對(duì)應(yīng)關(guān)系:f(x)=x3,x∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)  f(x)=$\left\{\begin{array}{l}\frac{1}{x+1}-3,x∈(-1,0]\\ x,x∈(0,1]\end{array}$,且g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$且目標(biāo)函數(shù)z=y-x的最大值是4,則k等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知a∈R,函數(shù)f(x)=a+$\frac{1}{|x|}$
(1)當(dāng)a=1時(shí),解不等式f(x)≤2x;
(2)若關(guān)于x的方程f(x)-2x=0在區(qū)間[-2,-1]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案