【題目】如圖,已知∠AOB=90°,EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度數(shù).(寫出必要過程)

【答案】∠COB=30°,∠AOC=120°.

【解析】

根據(jù)角平分線的定義得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再計算出∠BOF=∠EOF-∠BOE=15°,然后根據(jù)∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB進行計算.

∵OE平分∠AOB,OF平分∠BOC,

∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,

∵∠BOF=∠EOF-∠BOE=60°-45°=15°,

∴∠BOC=2∠BOF=30°,

∠AOC=∠BOC+∠AOB=30°+90°=120°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系中,

(1) 作出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出△A1B1C1三個頂點的坐標:

A1 ,B1 ,C1 .

(2) 直接寫出△ABC的面積為 .

(3) x軸上畫點P,使△PAC的周長最小. (不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.

(1)求該二次函數(shù)的解析式及點M的坐標;
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意實數(shù) , ,定義關(guān)于“ ”的一種運算如下: .例如:
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)

30

40

50

60

每天銷售量y(件)

500

400

300

200


(1)把上表中x、y的各組對應(yīng)值作為點的坐標,在下面的平面直角坐標系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務(wù)的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,動點PA點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt0)秒.

1)寫出數(shù)軸上點B表示的數(shù)______;點P表示的數(shù)______(用含t的代數(shù)式表示)

2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,若點PQ同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?

3)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速到家動,若點P、Q同時出發(fā),問點P運動多少秒時追上Q?

4)若MAP的中點,NBP的中點,在點P運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由,若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)如圖所示,O是直線AB上一點,∠AOC=∠BOCOC∠AOD的平分線.

1)求∠COD的度數(shù).

2)判斷ODAB的位置關(guān)系,并說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班的全體同學根據(jù)自己的興趣愛好參加了六個學生社團(每個學生必須參加且只參加一個),為了了解學生參加社團的情況,學生會對該班參加各個社團的人數(shù)進行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“讀書社”的學生有10人,請解答下列問題:
(1)該班的學生共有名;該班參加“愛心社”的人數(shù)為名,若該班參加“吉他社”與“街舞社”的人數(shù)相同,則“吉他社”對應(yīng)扇形的圓心角的度數(shù)為
(2)一班學生甲、乙、丙是“愛心社”的優(yōu)秀社員,現(xiàn)要從這三名學生中隨機選兩名學生參加“社區(qū)義工”活動,請你用畫樹狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

同步練習冊答案