【題目】已知拋物線,通過畫圖發(fā)現(xiàn),無論取何值,拋物線總會經(jīng)過兩個定點
直接寫出這兩個定點的坐標 、 ;
若將此拋物線向右平移個單位,再向上平移個單位,平移后的拋物線頂點都在某個函數(shù)的圖象上,求這個新函數(shù)的解析式(不必寫自變量取值范圍);
若拋物線與直線有兩個交點與.且,求的取值范圍.
【答案】(1);(2);(3)或
【解析】
(1)拋物線=b(x2+x)-3x-3,函數(shù)過定點,則x2+x=0,即可求解;
(2)原拋物線頂點坐標為(,),平移后為(,),即可求解;
(3)由,則1≤AB兩點水平距離≤4,分當b>0時和當b<0時用韋達定理即可求解.
解(1)∵=b(x2+x)-3x-3, 函數(shù)過定點,
∴x2+x=0,解得,x=0或x=-1,
∴拋物線總會經(jīng)過
故答案為;
解:原拋物線頂點橫坐標為:
縱坐標為:
平移后新拋物線頂點橫坐標為:
縱坐標為:
由
得:
即為平移后的拋物線頂點所在的函數(shù)解析式.
(3)∵,則1≤AB兩點水平距離≤4,
當b>0時,
設拋物線與直線交點為A與B,則A(0,-3),B(x,y),
∴=x-3,整理得,bx2+(b-4)x=0,
由韋達定理得,x+0=,則1≤≤4,
解得:≤b≤2,
同理,當b<0時,解得:
綜上所述,的取值范圍為或
科目:初中數(shù)學 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共有19條運營線路,覆蓋北京市11個轄區(qū).據(jù)統(tǒng)計,2017 年地鐵每小時客運量是2002年地鐵每小時客運量的4倍,2017年客運240萬人所用的時間比2002年客運240萬人所用的時間少30小時,求2017年地鐵每小時的客運量?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了方便游客觀賞景點,某景區(qū)設計建造了如圖所示的高為6米的觀景臺,且坡面的坡度比為1:1.后來為了方便行人推車(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為.
(1)求新坡面的坡角.
(2)原坡面底部的正前方13米(的長)有一座古建筑,為保護文物,當?shù)匚奈锕芾聿块T規(guī)定,坡面底部至少距古建筑7米,請問新的設計方案能否通過,試說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我省某工廠為全運會設計了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價x(元/件)的一次函數(shù),當售價為23元/件時,每天銷售量為790件;當售價為25元/件,每天銷售量為750件.
(1)求y與x的函數(shù)關系;
(2)如果該工藝品最高不超過每件30元,那么售價定位每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為C(1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點P為直線BD上方拋物線上一點,若,請求出點P的坐標.
(3)如圖3,M為線段AB上的一點,過點M作MN∥BD,交線段AD于點N,連接MD,若△DNM∽△BMD,請求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點.
(1)該拋物線的解析式為 ;
(2)設點E是拋物線上位于第一象限的動點,過點E作EF⊥x軸于點F,并交直線AB于N,過點E再作EM⊥AB于點M,求△EMN周長的最大值;
(3)當△EMN的周長最大時,在直線EF上是否存在點Q,使得△QCD是以CD為直角邊的直角三角形?若存在請求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關系及位置關系,請直接寫出結論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com