【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點D為AB上一點且BD=8厘米,點P在線段BC上以2厘米/秒的速度由B點向C點運動,設(shè)運動時間為t,同時,點Q在線段CA上由C點向A點運動.
(1)用含t的式子表示PC的長為_______________;
(2)若點Q的運動速度與點p的運動速度相等,當t=2時,三角形BPD與三角形CQP是否全等,請說明理由;
(3)若點Q的運動速度與點P的運動速度不相等,請求出點Q的運動速度是多少時,能夠使三角形BPD與三角形CQP全等?
【答案】(1)PC=12-2t;(2)ΔBPD≌ΔCQP理由見詳解;(3) cm/s
【解析】
(1)根據(jù)BC=12cm,點P在線段BC上以2厘米/秒的速度由B點向C點運動,所以當t秒時,運動2t,因此PC=12-2t.(2)若點Q的運動速度與點p的運動速度相等,當t=2s時,則CQ=4cm,BP=4cm,因為BC=12cm,所以PC=8cm,又因為BD=8cm,AB=AC,所以∠B=∠C,因此求出ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根據(jù)ΔBPD≌ΔCQP得出 BP=PC,進而算出時間t,再算出v即可.
(1)由題意得出:PC=12-2t
(2)若點Q的運動速度與點p的運動速度相等,當t=2s時,則CQ=4cm,BP=4cm,∵ BC=12cm,∴PC=8cm,又∵BD=8cm,AB=AC,∴∠B=∠C,在ΔBPD和ΔCQP中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS).
(3)若點Q的運動速度與點P的運動速度不相等,∵Vp≠VQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,則BP=PC=6cm,CQ=BD=8cm,∴點P、點Q運動的時間 t= =3s ,
∴VQ ===cm/s,即Q的速度為cm/s.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,D為BC邊上一點.
(1)如圖①,在Rt△ABC中,∠C=90°,將△ABC沿著AD折疊,點C落在AB邊上.請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
(2)如圖②,將△ABC沿著過點D的直線折疊,點C落在AB邊上的E處.
①若DE⊥AB,垂足為E,請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
②若AB=,BC=3,∠B=45°,求CD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有10個除號碼外其余都相同的小球,每個小球的號碼分別是1,2,3,4,5,6,7,8,9,10將它們充分搖勻,并從中任意摸出一個小球.規(guī)定摸出小球號碼能被3整除時,甲獲勝;摸出小球號碼能被5整除時,乙獲勝;這個游戲?qū)滓译p方公平么?請說明理由.如果不公平,應(yīng)該如何修改游戲規(guī)則才能對雙方公平?(游戲?qū)﹄p方公平的原則是:雙方獲勝的概率相等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于A、B兩點,與y軸交于C點,且對稱軸為直線x=1,點B坐標為(-1,0).則下面的四個結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當y<0時,x<-1或x>3.其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC=8,BO=AB,點M為BC邊上一動點,將線段OM繞點O按逆時針方向旋轉(zhuǎn)90°至ON,連接AN、CN,則△CAN周長的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠共有120名生產(chǎn)工人,每個工人每天可生產(chǎn)螺栓25個或螺母20個,如果一個螺栓與兩個螺母配成一套 ,那么每天安排多名工人生產(chǎn)螺栓,多少名工人生產(chǎn)螺母,才能使每天生產(chǎn)出來的產(chǎn)品配成最多套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學生的體藝素養(yǎng),隨機抽取了部分學生對這三項活動的興趣情況進行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)已知該校有1200名學生,請你根據(jù)樣本估計全校學生中喜歡剪紙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有_____填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程(m﹣1)x2﹣x﹣2=0.
(1)若x=﹣1是方程的一個根,求m的值和方程的另一根;
(2)當m為何實數(shù)時,方程有實數(shù)根;
(3)若x1,x2是方程的兩個根,且,試求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com