【題目】如圖,菱形的邊的垂直平分線交于點(diǎn),交于點(diǎn),連接.當(dāng)時(shí),則

A.B.C.D.

【答案】B

【解析】

連接BF,根據(jù)菱形的對(duì)角線平分一組對(duì)角線可得∠BAC=50°,根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得AF=BF,根據(jù)等邊對(duì)等角可得∠FBA=FAB,再根據(jù)菱形的鄰角互補(bǔ)求出∠ABC,然后求出∠CBF,最后根據(jù)菱形的對(duì)稱性可得∠CDF=CBF

解:如圖,連接BF,
在菱形ABCD中,∠BAC=BAD=×100°=50°,
EFAB的垂直平分線,
AF=BF,
∴∠FBA=FAB=50°,
∵菱形ABCD的對(duì)邊ADBC,
∴∠ABC=180°-BAD=180°-100°=80°,
∴∠CBF=ABC-ABF=80°-50°=30°,
由菱形的對(duì)稱性,∠CDF=CBF=30°.
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)和一次函數(shù)

(1)當(dāng)t=0時(shí),試判斷二次函數(shù)的圖象與x軸是否有公共點(diǎn),如果有,請(qǐng)寫出公共點(diǎn)的坐標(biāo);

(2)若二次函數(shù)的圖象與x軸的兩個(gè)不同公共點(diǎn),且這兩個(gè)公共點(diǎn)間的距離為8,求t的值;

(3)求證:不論實(shí)數(shù)t取何值,總存在實(shí)數(shù)x,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線ykx2kk0)的與y軸交于點(diǎn)A,與x軸交于點(diǎn)B

1)如圖1,求點(diǎn)B的坐標(biāo);

2)如圖2,第一象限內(nèi)的點(diǎn)C在經(jīng)過B點(diǎn)的直線y-x+b上,CDy軸于點(diǎn)D,連接BD,若SABD2k+2,求C點(diǎn)的坐標(biāo)(用含k的式子表示);

3)如圖3,在(2)的條件下,連接OC,交直線AB于點(diǎn)E,若3ABD﹣∠BCO45°,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中.直線y=﹣x+3與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c經(jīng)過B,C兩點(diǎn),與x軸負(fù)半軸交于點(diǎn)A,連結(jié)AC,A(-1,0)

(1)求拋物線的解析式;

(2)點(diǎn)P(m,n)是拋物線上在第一象限內(nèi)的一點(diǎn),求四邊形OCPB面積S關(guān)于m的函數(shù)表達(dá)式及S的最大值;

(3)若M為拋物線的頂點(diǎn),點(diǎn)Q在直線BC上,點(diǎn)N在直線BM上,Q,M,N三點(diǎn)構(gòu)成以MN為底邊的等腰直角三角形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行90kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小琴和小江參加學(xué)校舉行的“經(jīng)典誦讀"比賽活動(dòng),誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母依次表示這三個(gè)誦讀材料),將這三個(gè)字母分別寫在張完全相同的不透明卡片的正面上,把這張卡片背面朝上洗勻后放在桌面上,比賽時(shí)小琴先從中隨機(jī)抽取一張卡片, 記錄下卡精上的內(nèi)容,放回后洗勻,再由小江從中隨機(jī)抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進(jìn)行誦讀比賽.

小琴誦讀《論語》的概率是

請(qǐng)用列表法或畫樹狀圖(樹形圖)法求小琴和小江誦讀兩個(gè)不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙M的半徑為4,圓心M的坐標(biāo)為(68),點(diǎn)P是⊙M上的任意一點(diǎn),PAPB,且PA、PBx軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)A(1,2)和B(2,n),

(1)以原點(diǎn)O為位似中心畫出△A1B1O,使=

(2)y軸上是否存在點(diǎn)P,使得PA+PB的值最?若存在,求出P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案