【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號)

【答案】600±150

【解析】

試題本題需要分兩種情況求出第三邊的長度,然后計(jì)算面積.

試題解析:分兩種情況:

1)如圖(1

當(dāng)∠ACB為鈍角時(shí),∵BD是高, ∴∠D=90°

Rt△BCD中,BC=40,BD=30 ∴CD=

Rt△ABD中,AB=50, ∴AD==40

∴AC=ADCD=4010∴S=4010×30÷2=600150

2)如圖(2

當(dāng)∠ACB為銳角時(shí),∵BD是高, ∴∠ADB=∠BDC=90°,

Rt△BCD中,BC=40,BD=30 ∴CD=

Rt△ABD中,AB=50, ∴AD==40

∴AC=AD+CD=40+10∴S=40+10×30÷2=600+150

綜上所述:S= 600±150

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.

(1)求證:COM∽△CBA;

(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;

②分別以D,E為圓心,以大于DE的同樣長為半徑作弧,兩弧交于點(diǎn)F;

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行號召越來越多市民選擇租用共享單車出行已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:

(1)求手機(jī)支付金額y()與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料

在數(shù)軸上4所對的兩點(diǎn)之間的距離:

在數(shù)軸上3所對的兩點(diǎn)之間的距離;

在數(shù)軸上所對的兩點(diǎn)之間的距離:在數(shù)軸上點(diǎn)A、B分別表示數(shù)ab,則A、B兩點(diǎn)之間的距離

依據(jù)材料知識解答下列問題

數(shù)軸上表示的兩點(diǎn)之間的距離是______,數(shù)軸上表示數(shù)x3的兩點(diǎn)之間的距離表示為______

七年級研究性學(xué)習(xí)小組進(jìn)行如下探究:

請你在草稿紙上面出數(shù)軸當(dāng)表示數(shù)x的點(diǎn)在2之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:______,式子的最小值是______

請你在草稿紙上畫出數(shù)軸,當(dāng)x等于______時(shí),的值最小,且最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出三個(gè)多項(xiàng)式:x2+x-1,x2+3x+1,x2+x,請你選擇其中兩個(gè)進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊(duì)老師免費(fèi),學(xué)生按8折收費(fèi);乙方案:師生都按7.5折收費(fèi).

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時(shí),采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時(shí),采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道:|5﹣(﹣2|表示5與﹣2之差的絕對值,實(shí)際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離.請你借助數(shù)軸進(jìn)行以下探索:

1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是

2)數(shù)軸上表示x2的兩點(diǎn)之間的距離可以表示為

3)如果|x2|=5,則x=

4)同理|x+3|+|x1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到﹣31所對應(yīng)的點(diǎn)的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x1|=4,這樣的整數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).

(1)求AD的長及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案