【題目】已知:⊙O為△ABC的外接圓,AB=AC,E是AB的中點(diǎn),連OE,OE=,BC=8,則⊙O的半徑為( 。
A. 3 B. C. D. 5
【答案】C
【解析】
分析: 如圖,作輔助線;首先求出;根據(jù)勾股定理求出DE的長度;運(yùn)用射影定理即可求出AD的長度,即可解決問題.
詳解:如圖,作直徑AD,連接BD;
∵AB=AC, ∴,
∴AD⊥BC,BE=CE=4;
∵OE⊥AB,
∴AE=BE,而OA=OB,
∴OE為△ABD的中位線,
∴BD=2OE=5;
由勾股定理得:
,
∴DE=3;
∵AD為⊙O的直徑,
∴∠ABD=90°,由射影定理得:
,而BD=5,DE=3,
∴AD= , ⊙O半徑=.故選C.
點(diǎn)睛: 本題主要考查了垂徑定理、勾股定理及其應(yīng)用問題;解題的關(guān)鍵是作輔助線,靈活運(yùn)用勾股定理等幾何知識(shí)點(diǎn)來分析、判斷、推理或解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段,,線段在線段上運(yùn)動(dòng),、分別是、的中點(diǎn).
(1)若,則______;
(2)當(dāng)線段在線段上運(yùn)動(dòng)時(shí),試判斷的長度是否發(fā)生變化?如果不變請(qǐng)求出的長度,如果變化,請(qǐng)說明理由;
(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知在內(nèi)部轉(zhuǎn)動(dòng),、分別平分和,則、和有何數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)果不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景
如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為上一動(dòng)點(diǎn)(不與B,C重合),
求證:PA=PB+PC.
請(qǐng)你根據(jù)小明同學(xué)的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值.
(3)拓展延伸
如圖,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,則OC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,是的角平分線,是的邊上的高,過點(diǎn)做,交直線于點(diǎn).
如圖1,若,則___ ____;
若中的,則__ ____;(用表示)
如圖2,中的結(jié)論還成立嗎?若成立,說明理由;若不成立,請(qǐng)求出.(用表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩條線段長分別是一元二次方程的兩根,
(1)解方程求兩條線段的長。
(2)若把較長的線段剪成兩段,使其與另一段圍成等腰三角形,求等腰三角形的面積。
(3)若把較長的線段剪成兩段,使其與另一段圍成直角三角形,求直角三角形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在白紙上畫兩條長度均為且夾角為的線段、,然后你把一支長度也為的鉛筆放在線段上,將這支鉛筆以線段上的一點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)順時(shí)針旋轉(zhuǎn)一周。
(1)若與重合,當(dāng)旋轉(zhuǎn)角為______時(shí),這支鉛筆與線段、圍成的三角形是等腰三角形。
(2)點(diǎn)從逐漸向移動(dòng),記:
①若,當(dāng)旋轉(zhuǎn)角為、______、______、______、、______時(shí)這支鉛筆與線段、共圍成6個(gè)等腰三角形。
②當(dāng)這支鉛筆與線段、正好圍成5個(gè)等腰三角形時(shí),求的取值范圍。
③當(dāng)這支鉛筆與線段、正好圍成3個(gè)等腰三角形時(shí),直接寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)“利奇馬”給我縣帶來極端風(fēng)雨天氣,有一個(gè)水庫8月9日8:00的水位為﹣0.1m(以10m為警戒線,記高于警戒線的水位為正)在以后的6個(gè)時(shí)刻測(cè)得的水位升降情況如下(記上升為正,單位:m)
時(shí)刻 | 1 | 2 | 3 | 4 | 5 | 6 |
升降 | 0.5 | ﹣0.4 | 0.6 | ﹣0.5 | 0.2 | ﹣0.8 |
(1)根據(jù)記錄的數(shù)據(jù),求第2個(gè)時(shí)刻該水庫的實(shí)際水位;
(2)在這6個(gè)時(shí)刻中,該水庫最高實(shí)際水位是多少?
(3)經(jīng)過6次水位升降后,水庫的水位超過警戒線了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時(shí)利潤最大,最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com