【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線頂點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

)這個(gè)二次函數(shù)的表達(dá)式為____________.

)設(shè)直線的解析式為,則不等式的解集為___________.

)連結(jié)、,并把沿翻折,得到四邊形那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

)當(dāng)四邊形的面積最大時(shí),求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

)若把條件點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).改為點(diǎn)是拋物線上的任一動(dòng)點(diǎn),其它條件不變,當(dāng)以、、為頂點(diǎn)的四邊形為梯形時(shí),直接寫出點(diǎn)的坐標(biāo).

【答案】(1);(2)x≤0x≥3;(3);(4)當(dāng)P(,)時(shí),S四邊形ABPC最大;(5)點(diǎn)P的坐標(biāo)為(-2,5),(2,-3)(4,5).

【解析】試題分析:(1)直接設(shè)成頂點(diǎn)式即可得出拋物線解析式;

(2)先確定出點(diǎn)B,C坐標(biāo),再根據(jù)圖象直接寫出范圍

(3)利用菱形的性質(zhì)得出PO=PC即可得出點(diǎn)P的縱坐標(biāo),代入拋物線解析式即可得出結(jié)論;

(4)先利用坐標(biāo)系中幾何圖形的面積的計(jì)算方法建立函數(shù)關(guān)系式即可求出面積的最大值;

(5)先求出直線BC,BC,CD的解析式,分三種情況利用梯形的性質(zhì),一組對(duì)邊平行即可得出直線DP1,CP2,BP3的解析式,分別聯(lián)立拋物線的解析式建立方程組求解即可.

試題解析:(1)∵點(diǎn)D(1,﹣4)是拋物線y=x2+bx+c的頂點(diǎn),∴y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案為:y=x2﹣2x﹣3;

(2)令x=0,∴y=﹣3,∴C(0,﹣3),y=0,∴x2﹣2x﹣3=0,∴x=﹣1x=3,∴A(﹣1,0),B(3,0),∴不等式x2+bx+ckx+m的解集為x<0>3.故答案為:x<0>3;

(3)如圖1.∵四邊形POPC為菱形,∴PO=PC.∵C(0,﹣3),∴點(diǎn)P的縱坐標(biāo)為﹣.∵P在拋物線y=x2﹣2x﹣3,∴﹣=x2﹣2x﹣3,∴x=x=(舍),∴P.﹣);

(4)如圖2,由(1)知,B(3,0),C(0,﹣3),∴直線BC的解析式為y=x﹣3,過(guò)點(diǎn)PPEy軸交BCE設(shè)Pm,m2﹣2m﹣3),(0<m<3)

Em,m﹣3),∴PE=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m.∵A(﹣1,0),B(3,0),C(0,﹣3),∴S四邊形ABPC=SABC+SPCE+SPBE=ABOC+PE|xP|+PE|xBxP|

=ABOC+PE(|xP|+|xBxP|)=×4×3+(﹣m2+3m)×(m+3﹣m

=6+×(﹣m2+3m)=﹣m2+

當(dāng)m=時(shí),S四邊形ABPC最大=

當(dāng)m=時(shí)m2﹣2m﹣3=,∴P).

(5)如圖,由(1)知B(3,0),C(0,﹣3),D(1,﹣4),∴直線BC的解析式為y=x﹣3,直線BD的解析式為y=2x﹣6,直線CD的解析式為y=﹣x﹣3.∵P、CD、B為頂點(diǎn)的四邊形為梯形.∵拋物線的解析式為y=x2﹣2x﹣3①;

當(dāng)DP1BC時(shí),∴直線DP1的解析式為y=x﹣5②,聯(lián)立①②解得,點(diǎn)P1(2,﹣3),[另一個(gè)點(diǎn)為(1,﹣4)和點(diǎn)D重合舍去]

當(dāng)CP2BD時(shí),∴直線CP2的解析式為y=2x﹣3③,聯(lián)立①③解得點(diǎn)P2(4,5)

當(dāng)BP3CD時(shí),∴直線BP3CD的解析式為y=﹣x+3④,聯(lián)立①④解得點(diǎn)P3(﹣2,5).

綜上所述P、C、D、B為頂點(diǎn)的四邊形為梯形時(shí)點(diǎn)P的坐標(biāo)為(﹣2,5)、(2,﹣3)或(4,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了更好地開展陽(yáng)光體育一小時(shí)活動(dòng),對(duì)本校學(xué)生進(jìn)行了寫出你最喜歡的體育活動(dòng)項(xiàng)目(只寫一項(xiàng))的隨機(jī)抽樣調(diào)查,下面是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.

抽樣調(diào)查學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)圖 各運(yùn)動(dòng)項(xiàng)目的喜歡人數(shù)占抽樣總?cè)藬?shù)百分比統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上信息解答下列問題:

1)該校對(duì)________名學(xué)生進(jìn)行了抽樣調(diào)查;

2)請(qǐng)將圖1和圖2補(bǔ)充完整;

3)圖2中跳繩所在的扇形對(duì)應(yīng)的圓心角的度數(shù)是________;

4)若該校共有2400名同學(xué),請(qǐng)利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡跳繩運(yùn)動(dòng)的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°AC=BC,AD平分∠CABBC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠E.則ADBE平行嗎?

完成下面的解答過(guò)程(填寫理由或數(shù)學(xué)式).

解:∵∠1=∠2(已知),

(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠E=∠ (兩直線平行,內(nèi)錯(cuò)角相等),

又∵∠E=∠3(已知),

∴∠3=∠ (等量代換),

ADBE ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)

)求該二次函數(shù)的關(guān)系式.

)證明:無(wú)論取何值,函數(shù)值總不等于

)將該拋物線先向___________(填)平移___________個(gè)單位,再向___________(填)平移___________個(gè)單位,使得該拋物線的頂點(diǎn)為原點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點(diǎn),PQ垂直平分BE,分別交ADBE,BC于點(diǎn)P,O,Q,連接BP,EQ

1)求證:四邊形BPEQ是菱形;

2FAB的中點(diǎn),則線段OF與線段AE有什么位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;

3)在(2)的條件下,若AB6,OF4,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,∠MON =70°,點(diǎn)AB在∠MON的兩條邊上運(yùn)動(dòng),∠MAB與∠NBA的平分線交于點(diǎn)P

1)點(diǎn)A、B在運(yùn)動(dòng)過(guò)程中,∠P的大小會(huì)變嗎?若不會(huì),求∠P的度數(shù);若會(huì),請(qǐng)說(shuō)明理由.

2)如圖②,繼續(xù)作BC平分∠ABO,AP的反向延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)過(guò)程中,∠D的大小會(huì)變嗎?若不會(huì),求出∠D的度數(shù);若會(huì),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=3,BC=9.將矩形紙片折疊,使點(diǎn)B和點(diǎn)D重合.

1)求ED的長(zhǎng);

2)求折痕EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)從以下四個(gè)一元二次方程中任選三個(gè),并用適當(dāng)?shù)姆椒ń膺@三個(gè)方程

(1)x2x﹣1=0;

(2)(y﹣2)2﹣12=0;

(3)(1+m2=m+1;

(4)t2﹣4t=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案