【題目】列分式方程解應(yīng)用題:
“5G改變世界,5G創(chuàng)造未來(lái)”.2019年9月,全球首個(gè)5G上海虹橋火車站,完成了5G網(wǎng)絡(luò)深度覆蓋,旅客可享受到高速便捷的5G網(wǎng)絡(luò)服務(wù).虹橋火車站中5G網(wǎng)絡(luò)峰值速率為4G網(wǎng)絡(luò)峰值速率的10倍.在峰值速率下傳輸7千兆數(shù)據(jù),5G網(wǎng)絡(luò)比4G網(wǎng)絡(luò)快630秒,求5G網(wǎng)絡(luò)的峰值速率.
【答案】5G網(wǎng)絡(luò)的峰值速率為每秒傳輸0.1千兆數(shù)據(jù).
【解析】
設(shè)4G網(wǎng)絡(luò)的峰值速率為每秒傳輸x千兆,則5G網(wǎng)絡(luò)的峰值速率為每秒傳輸10x千兆,根據(jù)在峰值速率下傳輸7千兆數(shù)據(jù),5G網(wǎng)絡(luò)快630秒列出方程即可.
解:設(shè)4G網(wǎng)絡(luò)的峰值速率為每秒傳輸千兆數(shù)據(jù),則5G網(wǎng)絡(luò)的峰值速率為每秒傳輸10x千兆.
依題意,得
解得 .
經(jīng)檢驗(yàn):是原方程的解,且滿足實(shí)際意義.
答:5G網(wǎng)絡(luò)的峰值速率為每秒傳輸千兆數(shù)據(jù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)是(2,2),若點(diǎn)P在x軸上,且△APO是等腰三角形,則點(diǎn)P有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點(diǎn),過(guò)點(diǎn)G作DE⊥BC,垂足為E,交BA的延長(zhǎng)線于點(diǎn)D
(1)求證:DE是的⊙O切線;
(2)若AB=6,BG=4,求BE的長(zhǎng);
(3)若AB=6,CE=1.2,請(qǐng)直接寫(xiě)出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,直線分別交軸軸于、兩點(diǎn),、的長(zhǎng)滿足,點(diǎn)是直線上一點(diǎn),且.
求直線的解析式;
求過(guò)點(diǎn)的反比例函數(shù)解析式;
點(diǎn)在反比例函數(shù)圖象上是否存在一點(diǎn),使以點(diǎn)、、、為頂點(diǎn),為腰的四邊形為梯形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)為射線上一點(diǎn),點(diǎn)為的中點(diǎn),且.當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí) ,則與和的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,然后回答問(wèn)題 .
已知 ,,,,,,….,當(dāng)為大于1的奇數(shù)時(shí),;當(dāng)為大于1的偶數(shù)時(shí),.
(1)求;(用含的代數(shù)式表示)
(2)直接寫(xiě)出 ;(用含的代數(shù)式表示)
(3)計(jì)算:= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是瑞安部分街道示意圖,,,,,,,,,,為“公交汽車”?奎c(diǎn),甲公共汽車從站出發(fā),按照,,,,,,的順序到達(dá)站,乙公共汽車從站出發(fā),按照,,,,,,的順序到達(dá)站,如果甲、乙兩車分別從、兩站同時(shí)出發(fā),各站耽誤的時(shí)間相同,兩輛車速度也一樣,則( )
A. 甲車先到達(dá)指定站 B. 乙車先到達(dá)指定站
C. 同時(shí)到達(dá)指定站 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC分別沿AB,AC翻折得到△ABD 和△AEC,線段BD與AE交于點(diǎn) F,連接BE .
(1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);
(2)如果BD⊥CE,求∠CAB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB="AC," AB+BC=8.將△ABC折疊,使得點(diǎn)A落在點(diǎn)B處,折痕DF分別與AB、AC交于點(diǎn)D、F,連接BF,則△BCF的周長(zhǎng)是( )
A.8B.16C.4D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com