【題目】如圖,B(2m,0)、C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫(huà)射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過(guò)E、A′兩點(diǎn).
(1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′ ;
(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說(shuō)明理由;
(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為M,過(guò)M作MN垂直y軸,垂足為N:
①求a、b、m滿足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為5,請(qǐng)你探究a的取值范圍.
【答案】(1)45;(m,﹣m);(2)△D′OE∽△ABC,理由見(jiàn)解析;(3)①b=﹣1﹣am;②≤a≤2.
【解析】
(1)由B與C的坐標(biāo)求出OB與OC的長(zhǎng),根據(jù)OC-OB表示出BC的長(zhǎng),由題意AB=2BC,表示出AB,得到AB=OB,即三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即可確定出A′坐標(biāo);
(2)△D′OE∽△ABC,理由如下:根據(jù)題意表示出A與B的坐標(biāo),由,表示出P坐標(biāo),由拋物線的頂點(diǎn)為A′,表示出拋物線解析式,把點(diǎn)E坐標(biāo)代入整理得到m與n的關(guān)系式,利用兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的三角形相似即可得證;
(3)①當(dāng)E與原點(diǎn)重合時(shí),把A與E坐標(biāo)代入y=ax2+bx+c,整理即可得到a,b,m的關(guān)系式;
②拋物線與四邊形ABCD有公共點(diǎn),可得出拋物線過(guò)點(diǎn)C時(shí)的開(kāi)口最大,過(guò)點(diǎn)A時(shí)的開(kāi)口最小,分兩種情況考慮:若拋物線過(guò)點(diǎn)C(3m,0),此時(shí)MN的最大值為5,求出此時(shí)a的值;若拋物線過(guò)點(diǎn)A(2m,2m),求出此時(shí)a的值,即可確定出拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍.
解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,
∵AB=2BC,
∴AB=2m=0B,
∵∠ABO=90°,
∴△ABO為等腰直角三角形,
∴∠AOB=45°,
由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);
故答案為:45;(m,﹣m);
(2)△D′OE∽△ABC,理由如下:
由已知得:A(2m,2m),B(2m,0),
∵,
∴P(2m,m),
∵A′為拋物線的頂點(diǎn),
∴設(shè)拋物線解析式為y=a(x﹣m)2﹣m,
∵拋物線過(guò)點(diǎn)E(0,n),
∴n=a(0﹣m)2﹣m,即m=2n,
∴OE:OD′=BC:AB=1:2,
∵∠EOD′=∠ABC=90°,
∴△D′OE∽△ABC;
(3)①當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),E(0,0),
∵拋物線y=ax2+bx+n過(guò)點(diǎn)E,A′,
∴ ,
整理得:am+b=﹣1,即b=﹣1﹣am;
②∵拋物線與四邊形ABCD有公共點(diǎn),
∴拋物線過(guò)點(diǎn)C時(shí)的開(kāi)口最大,過(guò)點(diǎn)A時(shí)的開(kāi)口最小,
若拋物線過(guò)點(diǎn)C(3m,0),此時(shí)MN的最大值為5,
∴a(3m)2﹣(1+am)3m=0,
整理得:am=,即拋物線解析式為y=,
由A(2m,2m),可得直線OA解析式為y=x,
聯(lián)立拋物線與直線OA解析式得: ,
解得:x=5m,y=5m,即M(5m,5m),
令5m=5,即m=1,
當(dāng)m=1時(shí),a=;
若拋物線過(guò)點(diǎn)A(2m,2m),則a(2m)2﹣(1+am)2m=2m,
解得:am=2,
∵m=1,
∴a=2,
則拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍為≤a≤2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長(zhǎng),分別交對(duì)角線BD于點(diǎn)F,交BC邊延長(zhǎng)線于點(diǎn)E.若FG=2,則AE的長(zhǎng)度為( )
A. 6B. 8
C. 10D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一個(gè)動(dòng)點(diǎn),以B點(diǎn)為旋轉(zhuǎn)中心把線段BP逆時(shí)針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交y軸于點(diǎn)A,交x軸于點(diǎn)B(-3,0)和點(diǎn)C(1,0),頂點(diǎn)為點(diǎn)M.
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E為x軸上一動(dòng)點(diǎn),若△AME的周長(zhǎng)最小,請(qǐng)求出點(diǎn)E的坐標(biāo);
(3)點(diǎn)F為直線AB上一個(gè)動(dòng)點(diǎn),點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),若△BFP為等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線OB、AC相交于點(diǎn)D,雙曲線y=(x>0)經(jīng)過(guò)點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E,且OBAC=160,則點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是長(zhǎng)為10m,傾斜角為30°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017
首先設(shè)S=1+2+22+23+24+…+22017 ① 則2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在數(shù)列求和中,我們稱(chēng)之為:“錯(cuò)位相減法”
請(qǐng)你根據(jù)上面的材料,解決下列問(wèn)題
(1)求1+3+32+33+34+…+32019的值
(2)若a為正整數(shù)且,求
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點(diǎn)P是AC上的動(dòng)點(diǎn),連接BP,以BP為邊作等邊△BPQ,連接CQ,則點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段CQ長(zhǎng)度的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點(diǎn).
(1)求出m的值并畫(huà)出這條拋物線;
(2)求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);
(3)x取什么值時(shí),拋物線在x軸上方?
(4)x取什么值時(shí),y的值隨x值的增大而減?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com