【題目】已知:如圖,在ABCD中,E,F分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點0.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什幺特殊四邊形?請說明理由.
【答案】(1)證明見解析;(2)四邊形BEDF是菱形.
【解析】
試題分析:(1)由平行四邊形的性質得出AB=CD,∠BAE=∠DCF,由SAS證明△ABE≌△CDF即可;
(2)由平行四邊形的性質得出AD∥BC,AD=BC,證出DE=BF,得出四邊形BEDF是平行四邊形,得出OB=OD,再由等腰三角形的三線合一性質得出EF⊥BD,即可得出四邊形BEDF是菱形.
試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,∵AB=CD,∠BAE=∠DCF,AE=CF,∴△ABE≌△CDF(SAS);
(2)四邊形BEDF是菱形;理由如下:如圖所示:
∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四邊形BEDF是平行四邊形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四邊形BEDF是菱形.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中xOy中,已知點A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),m>0,1<a<3,點P(n﹣m,n)是四邊形ABCD內的一點,且△PAD與△PBC的面積相等,求n﹣m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A1(2,2)在直線y=x上,過點A1作A1B1∥y軸交直線于點B1,以點A1為直角頂點,A1B1為直角邊在A1B1的右側作等腰直角△A1B1C1,再過點C1作A2B2∥y軸,分別交直線y=x和于A2,B2兩點,以點A2為直角頂點,A2B2為直角邊在A2B2的右側作等腰直角△A2B2C2…,按此規(guī)律進行下去,則等腰直角△AnBnCn的面積為 .(用含正整數n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示, 中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點,且BD=1,連接DA,點P是射線DA上的動點。
(1)求證DA是⊙O的切線;
(2)DP的長度為多少時,∠BPC的度數最大,最大度數是多少?請說明理由。
(3)點P運動的過程中,(PB+PC)的值能否達到最小,若能,求出這個最小值,若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com