【題目】在一次運輸任務(wù)中,一輛汽車將一批貨物從甲地運往乙地,到達(dá)乙地卸貨后返回甲地.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的關(guān)系如圖所示.
根據(jù)圖像回答下列問題:
(1)汽車在乙地卸貨停留 (h);
(2)求汽車返回甲城時y與x的函數(shù)解析式,并寫出定義域;
(3)求這輛汽車從甲地出發(fā)4 h時與甲地的距離.
【答案】(1)0.5;(2)y=-48x+240(2.5≤x≤5);(3)這輛汽車從甲地出發(fā)4 h時與甲地的距離48 km.
【解析】
(1)從圖象可以看出汽車在乙地卸貨停了2.5-2=0.5小時;
(2)設(shè)返程中y與x的函數(shù)關(guān)系式為:y=kx+b,運用待定系數(shù)法可以直接求出其解就可以了;
(3)根據(jù)時間的定義域得出t是4h時,應(yīng)該代入返回時的解析式解答即可.
解:(1)根據(jù)圖象可得:汽車在乙地卸貨停了2.5-2=0.5小時;
故答案為:0.5;
(2)設(shè)汽車返回甲城時y與x的函數(shù)解析式為y=kx+b,
把(2.5,120)和(5,0)代入解析式可得:
,
解得:,
所以解析式為:y=-48x+240(2.5≤x≤5);
(3)因為2.5<4<5,所以把x=4代入y=-48x+240中,
可得:y=48,
答:這輛汽車從甲地出發(fā)4h時與甲地的距離為48km.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年7月9日,北京市滴滴快車調(diào)整了價格,規(guī)定車費由“總里程費+總時長費”兩部分構(gòu)成,具體收費標(biāo)準(zhǔn)如下表:(注:如果車費不足起步價,則按起步價收費.)
時間段 | 里程費(元/千米) | 時長費(元/分鐘) | 起步價(元) |
06:00—10:00 | 1.80 | 0.80 | 14.00 |
10:00—17:00 | 1.45 | 0.40 | 13.00 |
17:00—21:00 | 1.50 | 0.80 | 14.00 |
21:00—06:00 | 2.15 | 0.80 | 14.00 |
(1)小明07:10乘快車上學(xué),行駛里程6千米,時長10分鐘,應(yīng)付車費 元;
(2)小芳17:20乘快車回家,行駛里程1千米,時長15分鐘,應(yīng)付車費 元;
(3)小華晚自習(xí)后乘快車回家,20:45在學(xué)校上車.由于道路施工,車輛行駛緩慢,15分鐘后選擇另外道路,改道后速度是改道前速度的3倍,10分鐘后到家,共付了車費37.4元,問從學(xué)校到小華家快車行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一水池的容積V(公升)與注入水的時間t(分鐘)之間開始是一次函數(shù)關(guān)系,表中記錄的是這段時間注入水的時間與水池容積部分對應(yīng)值.
注入水的時間t(分鐘) | 0 | 10 | … | 25 |
水池的容積V(公升) | 100 | 300 | … | 600 |
(1)求這段時間時V關(guān)于t的函數(shù)關(guān)系式(不需要寫出函數(shù)的定義域);
(2)從t為25分鐘開始,每分鐘注入的水量發(fā)生變化了,到t為27分鐘時,水池的容積為726公升,如果這兩分鐘中的每分鐘注入的水量增長的百分率相同,求這個百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一條射線,、分別是和的平分線.
(1)如圖①,當(dāng)時,則的度數(shù)為________________;
(2)如圖②,當(dāng)射線在內(nèi)繞點旋轉(zhuǎn)時,、、三角之間有怎樣的數(shù)量關(guān)系?并說明理由;
(3)當(dāng)射線在外如圖③所示位置時,(2)中三個角:、、之間數(shù)量關(guān)系的結(jié)論是否還成立?給出結(jié)論并說明理由;
(4)當(dāng)射線在外如圖④所示位置時,、、之間數(shù)量關(guān)系是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解方程:3x+5=x+2請按所給導(dǎo)語,填寫完整.
解:移項,得3x____=2____,(依據(jù):_____).
合并同類項,得______,
系數(shù)化為1,得_____,(依據(jù):______).
(2)解方程:2(x+15)=18﹣3(x﹣9).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接浙江省中小學(xué)生健康體質(zhì)測試,某學(xué)校開展“健康校園,陽光跳繩”活動,為此學(xué)校準(zhǔn)備購置A,B,C三種跳繩.已知某廠家的跳繩的規(guī)格與價格如下表:
A繩子 | B繩子 | C繩子 | |
長度(米) | 8 | 6 | 4 |
單價(元/條) | 12 | 8 | 6 |
(1)已知購買A,B兩種繩子共20條花了180元,問A,B兩種繩子各購買了多少條?
(2)若該廠家有一根長200米的繩子,現(xiàn)將其裁成A,C兩種繩子銷售總價為240元,則剩余的繩子長度最多可加工幾條B種繩子?
(3)若該廠家有一根長200米的繩子,現(xiàn)將其裁成A,B,C三種繩子共40條(沒有剩余)銷售給學(xué)校,學(xué)校要求A種繩子的數(shù)量少于B種繩子的數(shù)量但不少于B種繩子的數(shù)量的一半,請直接寫出所有的裁剪方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則6小時可到達(dá)乙地.
(1)寫出時間t(時)關(guān)于速度v(千米/時)的函數(shù)關(guān)系式,并畫出函數(shù)圖象.
(2)若這輛汽車需在5小時內(nèi)從甲地到乙地,則此時汽車的平均速度至少應(yīng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AD = 6,AB = ,∠A = 45°.過點B、D分別做BE⊥AD,DF⊥BC,交AD、BC與點E、F.點Q為DF邊上一點,∠DEQ = 30°,點P為EQ的中點,過點P作直線分別與AD、BC相交于點M、N.若MN = EQ,則EM的長等于___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com