【題目】某地城管需要從甲、乙兩個(gè)倉庫向AB兩地分別運(yùn)送10噸和5噸的防寒物資,甲、乙兩倉庫分別有8噸、7噸防寒物資.從甲、乙兩倉庫運(yùn)送防寒物資到AB兩地的運(yùn)費(fèi)單價(jià)(元/噸)如表1,設(shè)從甲倉庫運(yùn)送到A地的防寒物資為x噸(如表2).

1)完成表2 , ;

2)求運(yùn)送的總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)表達(dá)式,并直接寫出x的取值范圍;

3)直接寫出最低總運(yùn)費(fèi).

【答案】(1);(2);(3990.

【解析】

(1)由題意填表即可;

(2)根據(jù)題意表示出甲倉庫和乙倉庫分別運(yùn)往A、B兩港口的物資數(shù),再由等量關(guān)系:總運(yùn)費(fèi)=甲倉庫運(yùn)往A、B港口的費(fèi)用+乙倉庫運(yùn)往A、B港口的費(fèi)用,列式并化簡(jiǎn)解答即可;

(3)因?yàn)樗玫暮瘮?shù)為一次函數(shù),由増減性可知:yx增大而減少,則當(dāng)x=8時(shí),y最小,并求出最小值即可

(1)設(shè)從甲倉庫運(yùn)送到地的防寒物資為噸,可得從甲倉庫運(yùn)送到地的防寒物資為噸,從乙倉庫運(yùn)送到B地的防寒物資為;

故答案為:,

(2)運(yùn)送的總運(yùn)費(fèi)y()x()之間的函數(shù)表達(dá)式為:,化簡(jiǎn)得:

(3)(2)增大而減少,所以當(dāng)時(shí)總運(yùn)費(fèi)最小,當(dāng)時(shí),,最低總運(yùn)費(fèi)為990.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則EF的長(zhǎng)為( 。

A. 4 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知等腰直角中,BD為斜邊上的中線,EDC上的一點(diǎn),且GAGBDF.

1)求證:AF=BE.

2)如圖②,當(dāng)點(diǎn)EDC的延長(zhǎng)線上,其它條件不變,①的結(jié)論還能成立嗎?若不能,請(qǐng)說明理由;若能,請(qǐng)予以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:

閱讀時(shí)間

(小時(shí))

2

2.5

3

3.5

4

學(xué)生人數(shù)(名)

1

2

8

6

3

則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( 。

A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+3+32+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39,①得:3S﹣S=39﹣1,即2S=39﹣1,S=

請(qǐng)閱讀張紅發(fā)現(xiàn)的規(guī)律,并幫張紅解決下列問題:

(1)愛動(dòng)腦筋的張紅想:如果把“3”換成字母m(m0m1),應(yīng)該能用類比的方法求出1+m+m2+m3+m4++m2018的值,對(duì)該式的值,你的猜想是______(用含m的代數(shù)式表示).

(2)證明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,直線Ly=mx+5mx軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).

1)當(dāng)OA=OB時(shí),求點(diǎn)A坐標(biāo)及直線L的解析式;

2)在(1)的條件下,如圖②所示,設(shè)QAB延長(zhǎng)線上一點(diǎn),作直線OQ,過AB兩點(diǎn)分別作AMOQM,BNOQN,若AM=4,求BN的長(zhǎng);

3)當(dāng)m取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連EFy軸于P點(diǎn),如圖③.

問:當(dāng)點(diǎn)By軸正半軸上運(yùn)動(dòng)時(shí),試猜想PB的長(zhǎng)是否為定值?若是,請(qǐng)求出其值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊為直徑的⊙經(jīng)過點(diǎn),是⊙上一點(diǎn),連結(jié)于點(diǎn),且,.

(1)試判斷與⊙的位置關(guān)系,并說明理由;

(2)若點(diǎn)是弧的中點(diǎn),已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)M,點(diǎn)FAD上,AF=6cm,BF=12cm,FBM=CBM,點(diǎn)EBC的中點(diǎn),若點(diǎn)P1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動(dòng);點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到F點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案