【題目】如圖,正方形中,,對角線,相交于點,點,分別從,兩點同時出發(fā),以的速度沿,運動,到點,時停止運動,設(shè)運動時間為,的面積為,則與的函數(shù)關(guān)系可用圖象表示為( )
A.B.C.D.
【答案】B
【解析】
由點E,F分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,得到BE=CF=t,則CE=8﹣t,再根據(jù)正方形的性質(zhì)得OB=OC,∠OBC=∠OCD=45°,然后根據(jù)“SAS”可判斷△OBE≌△OCF,所以S△OBE=S△OCF,這樣S四邊形OECF=S△OBC=16,于是S=S四邊形OECF﹣S△CEF=16﹣(8﹣t)t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函數(shù)的性質(zhì)即可得出結(jié)論.
根據(jù)題意得:BE=CF=t,CE=8﹣t.
∵四邊形ABCD為正方形,∴OB=OC,∠OBC=∠OCD=45°.
在△OBE和△OCF中,∵,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四邊形OECF=S△OBC=×82=16,∴S=S四邊形OECF﹣S△CEF=16﹣(8﹣t)t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)與t(s)的函數(shù)圖象為拋物線一部分,頂點為(4,8),自變量為0≤t≤8.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣安市某樓盤準(zhǔn)備以每平方米6000元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米4860元的均價開盤銷售.
(1)求平均每次下調(diào)的百分率.
(2)某人準(zhǔn)備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,一次性送裝修費每平方米80元,試問哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣3過點A(1,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P是線段AD上的動點.
(1)b= ,拋物線的頂點坐標(biāo)為 ;
(2)求直線AD的解析式;
(3)過點P的直線垂直于x軸,交拋物線于點Q,連接AQ,DQ,當(dāng)△ADQ的面積等于△ABD的面積的一半時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為等邊三角形內(nèi)一點,連接,,,以為一邊作,且,連接、.
(1)判斷與的大小關(guān)系并證明;
(2)若,,,判斷的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的對稱軸為x=﹣1,且過點(﹣3,0),(0,﹣3).
(1)求拋物線的表達(dá)式.
(2)已知點(m,k)和點(n,k)在此拋物線上,其中m≠n,請判斷關(guān)于t的方程t2+mt+n=0是否有實數(shù)根,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
某生態(tài)示范園要對1號、2號、3號、4號四個新品種共500株果樹幼苗進(jìn)行成活實驗,從中選出成活率高的品種進(jìn)行推廣.通過實驗得知:3號果樹幼苗成活率為89.6%,把實驗數(shù)據(jù)繪制成下列兩幅統(tǒng)計圖(部分信息未給出).
(1)實驗所用的2號果樹幼苗的數(shù)量是_______株;
(2)求出3號果樹幼苗的成活數(shù),并把圖2的統(tǒng)計圖補充完整;
(3)你認(rèn)為應(yīng)選哪一種果樹幼苗進(jìn)行推廣?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20米,如果水位上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)當(dāng)水位在正常水位時,有一艘寬為6米的貨船經(jīng)過這里,船艙上有高出水面3.6米的長方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com