【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20米,如果水位上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)當(dāng)水位在正常水位時(shí),有一艘寬為6米的貨船經(jīng)過這里,船艙上有高出水面3.6米的長(zhǎng)方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?
【答案】(1)
(2)在正常水位時(shí),此船能順利通過這座拱橋
【解析】
解:(1)設(shè)拋物線解析式為………………………………………1分
設(shè)點(diǎn),點(diǎn)………………………………………………2分
由題意:
解得………………………………………………3分
∴………………………………………………4分
(2)方法一:
當(dāng)時(shí),
∵.6 ………………………………………………5分
∴在正常水位時(shí),此船能順利通過這座拱橋.…………………………………6分
方法二:
當(dāng)時(shí),
∴
∵………………………………………………5分
∴在正常水位時(shí),此船能順利通過這座拱橋.…………………………………6分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,
求拋物線與軸的交點(diǎn)坐標(biāo);
求拋物線與軸的兩個(gè)交點(diǎn)及兩個(gè)交點(diǎn)間的距離.
求拋物線與軸的交點(diǎn)及與軸交點(diǎn)所圍成的三角形面積.
把拋物線改為頂點(diǎn)式,說明頂點(diǎn)和對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢驗(yàn)兩枚六個(gè)面分別刻有點(diǎn)數(shù)1、 2、3、4、5、6的正六面體骰子的質(zhì)量是否都合格,在相同的條件下,同時(shí)拋兩枚骰子20 00 0次,結(jié)果發(fā)現(xiàn)兩個(gè)朝上面的點(diǎn)數(shù)和是7的次數(shù)為20次.你認(rèn)為這兩枚骰子質(zhì)量是否都合格(合格標(biāo)準(zhǔn)為:在相同條件下拋骰子時(shí),骰子各個(gè)面朝上的機(jī)會(huì)相等)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時(shí)間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個(gè)說法錯(cuò)誤的是( )
A. 體育場(chǎng)離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場(chǎng)鍛煉了15分鐘
C. 體育場(chǎng)離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,直線交y軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)C坐標(biāo)為,作點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)F,連接BF和OF,OF交AC于點(diǎn)E,交AB于點(diǎn)M.
(1)求證:.
(2)如圖(2),連接CF交AB于點(diǎn)H,求證:.
(3)如圖(3),若,G為x軸負(fù)半軸上一動(dòng)點(diǎn),連接MG,過點(diǎn)M作GM的垂線交FB的延長(zhǎng)線于點(diǎn)D,GB-BD的值是否為定值?若是,求其值;若不是,求其取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)G作EF ∥BC交AB于E,交AC于F,過點(diǎn)G作GD⊥ AC于D,下列四個(gè)結(jié)論:①EF = BE+CF;②∠BGC= 90 °+∠A;③點(diǎn)G到△ ABC各邊的距離相等;④設(shè)GD =m,AE + AF =n,則S△AEF=mn.其中正確的結(jié)論有( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
材料一:數(shù)學(xué)上有一種根號(hào)內(nèi)又帶根號(hào)的數(shù),它們能通過完全平方式及二次根式的性質(zhì)化去一層(或多層)根號(hào),如:
材料二:配方法是初中數(shù)學(xué)思想方法中的一種重要的解題方法,配方法的最終目的就是配成完全平方式, 利用完全平方式來解決問題,它的應(yīng)用非常廣泛,在解方程、化簡(jiǎn)根式、因式分解等方面都經(jīng)常 用到.
如:
∵,∴,即
∴的最小值為
閱讀上述材料解決下面問題:
(1) , ;
(2)求的最值;
(3)已知,求的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是函數(shù)y=圖象上的一點(diǎn),已知B(﹣,﹣),C(,).試?yán)眯再|(zhì):“y=圖象上的任意一點(diǎn)P都滿足|PB﹣PC|=2”求解下面問題:作∠BAC的內(nèi)角平分線AE,過B作AE的垂線交AE于F.當(dāng)點(diǎn)A在函數(shù)y=圖象上運(yùn)動(dòng)時(shí),點(diǎn)F也總在一圖形上運(yùn)動(dòng),該圖形為( 。
A. 圓 B. 雙曲線 C. 拋物線 D. 直線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com