如圖,將兩張等寬的紙條疊放在一起,重疊的部分(圖中陰影部分)是一個四邊形,這個四邊形是______四邊形.
如圖,作DE⊥BC于E,BF⊥CD于F.
∵紙條對邊平行,∴ABCD為平行四邊形.
∵紙條等寬,∴DE=BF.
∵S?ABCD=BC•DE=CD•BF,
∴BC=CD.
∴ABCD為菱形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,CH⊥BD,垂足為H,P點是AD上的一個動點(P與A、D不重合),CP與BD交于E點.已知CH=
60
13
,DH:CD=5:13,設(shè)AP=x,四邊形ABEP的面積為y.
(1)求BD的長;
(2)用含x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

矩形的邊長為10cm和15cm,其中一內(nèi)角平分線分長邊為兩部分,這兩部分的長為( 。
A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,一塊磚的外側(cè)面積為x,那么圖中殘留部分墻面的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下述說明過程,討論完成下列問題:
已知:如圖所示,在?ABCD中,∠A的平分線與BC相交于點E,∠B的平分線與AD相交于點F,AE與BF相交于點O,試說明四邊形ABEF是菱形.
證明:(1)∵四邊形ABCD是平行四邊形,
(2)∴ADBC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分別平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四邊形ABEF是菱形.

問:①上述說明過程是否正確?
答:______.
②如果錯誤,指出在第______步到第______步推理錯誤,應(yīng)在第______步后添加如下證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是根據(jù)四邊形的不穩(wěn)定性制作的邊長均為15cm的可活動菱形衣架.若墻上釘子間的距離AB=BC=15cm,則∠1=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩條筆直的公路l1、l2相交于點O,村莊C的村民在公路的旁邊建三個加工廠A、B、D,已知AB=BC=CD=DA=5千米,村莊C到公路l1的距離為4千米,則C到公路l2的距離是(  )
A.6千米B.5千米C.4千米D.3千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在菱形ABCD中,∠A=60°,AB=4,O為對角線BD的中點,過O點作OE⊥AB,垂足為E.
(1)求∠ABD的度數(shù);
(2)求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在菱形ABCD中,對角線AC與BD相交于點O,AB=5,AC=6.過D點作DEAC交BC的延長線于點E.
(1)求△BDE的周長;
(2)點P為線段BC上的點,連接PO并延長交AD于點Q.求證:BP=DQ.

查看答案和解析>>

同步練習(xí)冊答案