【題目】如圖,在平行四邊形ABCD中,E、 F分別為邊AB、CD的中點(diǎn),BD是對角線.過點(diǎn)有作AG∥DB交CB的延長線于點(diǎn)G.
(1)求證:△ADE≌△CBF;
(2)若∠G=90° ,求證:四邊形DEBF是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)已知條件證明AE=CF,從而根據(jù)SAS可證明兩三角形全等;
(2)先證明DE=BE,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,∠A=∠C,
∵點(diǎn)E、F分別是AB、CD的中點(diǎn),
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
∵,
∴△ADE≌△CBF(SAS);
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四邊形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E為AB的中點(diǎn),
∴AE=BE=DE,
∵DF∥BE,DF=BE,
∴四邊形DEBF是平行四邊形,
∴四邊形DEBF是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小強(qiáng)從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時(shí)需把方向調(diào)整到與出發(fā)時(shí)一致,則方向的調(diào)整應(yīng)是( 。
A. 左轉(zhuǎn) 80° B. 右轉(zhuǎn)80° C. 右轉(zhuǎn) 100° D. 左轉(zhuǎn) 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)和B(3,0),與y軸交于C點(diǎn),點(diǎn)C關(guān)于拋物線的對稱軸的對稱點(diǎn)為點(diǎn)D.拋物線頂點(diǎn)為H.
(1)求拋物線的解析式.
(2)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動時(shí),在直線AD上是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)點(diǎn)P為直線AD上方拋物線的對稱軸上一動點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在以動點(diǎn)Q,使PQ+QB最小,若存在,請直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在⊙O上,過點(diǎn)C的切線交AD的延長線于點(diǎn)E,且AE⊥CE,連接CD.
(1)求證:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為3的正三角形ABC放置在直線l上(AB與直線l重合),將正三角形ABC沿直線l向右做無滑動的滾動,正三角形ABC的任意一邊與直線l重合時(shí)記錄滾動次數(shù),例如,正三角形ABC由圖中位置①滾動到位置②時(shí)記錄為滾動一次,當(dāng)正三角形ABC由圖中位置①開始滾動2018次時(shí),點(diǎn)A經(jīng)過的路徑總長度為( 。
A.2690πB.2692πC.4034πD.4036π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△OAB中,∠AOB=90°,OA=OB=4,以點(diǎn)O為圓心、2為半徑畫圓,點(diǎn)C是⊙O上任意一點(diǎn),連接BC,OC.將OC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°,交⊙O于點(diǎn)D,連接AD.
(1)當(dāng)AD與⊙O相切時(shí),
①求證:BC是⊙O的切線;
②求點(diǎn)C到OB的距離.
(2)連接BD,CD,當(dāng)△BCD的面積最大時(shí),點(diǎn)B到CD的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“和諧分式”.如: ,則是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號);
①;②;③;④;
(2)將“和諧分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為:=_______(要寫出變形過程);
(3)應(yīng)用:先化簡,并求x取什么整數(shù)時(shí),該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問漁船在B處需要等待多長時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時(shí))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com