【題目】一元二次方程x2﹣5x﹣6=0的解是_____.
【答案】x1=6,x2=﹣1
【解析】
用因式分解的方法解一元二次方程.
∵x2﹣5x﹣6=0
則(x-6)(x+1)=0
x-6=0;x+1=0
解得x1=6,x2=﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,不能作為直角三角形三邊長(zhǎng)度的是( )
A.2、3、4
B.3、4、5
C.6、8、10
D.25、24、7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列生活中的現(xiàn)象,屬于平移的是( )
A.抽屜的拉開(kāi)
B.汽車(chē)刮雨器的運(yùn)動(dòng)
C.坐在秋千上人的運(yùn)動(dòng)
D.投影片的文字經(jīng)投影變換到屏幕
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E,F是對(duì)角線(xiàn)BD上的兩點(diǎn)且BE=DF,聯(lián)結(jié)AE,CF.
求證:AE=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用小立方體搭一個(gè)幾何體,使它從正面、從上面看到的形狀圖如圖所示,這樣的幾何體只有一種嗎?
(1)它最多需要多少個(gè)小立方體?它最少需要多少個(gè)小立方體?
(2)請(qǐng)你畫(huà)出這兩種情況下的從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,用一個(gè)平面去截掉一個(gè)正方體的一條棱.
(1)剩下的幾何體的形狀是什么?
(2)剩下的幾何體有幾個(gè)頂點(diǎn)?幾條棱?幾個(gè)面?
(3)若按此方法截掉一個(gè)n棱柱的一條棱,則剩下的幾何體有幾個(gè)頂點(diǎn)?幾條棱?幾個(gè)面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016四川省樂(lè)山市第22題)“六一”期間,小張購(gòu)進(jìn)100只兩種型號(hào)的文具進(jìn)行銷(xiāo)售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:
(1)小張如何進(jìn)貨,使進(jìn)貨款恰好為1300元?
(2)要使銷(xiāo)售文具所獲利潤(rùn)最大,且所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,請(qǐng)你幫小張?jiān)O(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+2x+6(a≠0)交x軸與A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),將直尺WXYZ與x軸負(fù)方向成45°放置,邊WZ經(jīng)過(guò)拋物線(xiàn)上的點(diǎn)C(4,m),與拋物線(xiàn)的另一交點(diǎn)為點(diǎn)D,直尺被x軸截得的線(xiàn)段EF=2,且△CEF的面積為6.
(1)求該拋物線(xiàn)的解析式;
(2)探究:在直線(xiàn)AC上方的拋物線(xiàn)上是否存在一點(diǎn)P,使得△ACP的面積最大?若存在,請(qǐng)求出面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)將直尺以每秒2個(gè)單位的速度沿x軸向左平移,設(shè)平移的時(shí)間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線(xiàn)與x軸交于點(diǎn)M,與拋物線(xiàn)的其中一個(gè)交點(diǎn)為點(diǎn)N,請(qǐng)直接寫(xiě)出當(dāng)t為何值時(shí),可使得以C、D、M、N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com