【題目】已知直線與軸、軸分別交于、兩點,拋物線經過、兩點,與軸的另一個交點為,且.
(1)求拋物線的解析式;
(2)點在上,點在的延長線上,且,連接交于點,點為第一象限內的一點,當是以為斜邊的等腰直角三角形時,連接,設的長度為,的面積為,請用含的式子表示,并寫出自變量的取值范圍;
(3)在(2)的條件下,連接、,將沿翻折到的位置(與對應),若,求點的坐標.
【答案】(1);(2)(0<t<4);(3)K(1,-1)
【解析】
(1)利用求出點C、A的坐標及點B的坐標,即可代入求出解析式;
(2)過點D作DE⊥x軸于E,作QF⊥DE于F,設QF=m,根據△QDF≌△DPE 求出FD=4+t-m,EP=4-t+m,解出m=t ,即可根據三角形的面積公式計算得到函數(shù)解析式及t的取值范圍;
(3)作PL∥OQ ,GM⊥AB于M ,KN⊥AB于N,證得 △PGL≌△QGC,得到GP=GQ,根據勾股定理求出t,再證明四邊形PGDK為正方形,根據正方形的性質及△GMP≌△PNK求出AN及ON即可.
(1)解:當x=0時,y=4,∴C(0,4)
當y=0時,x=-4,∴A(-4,0)
∵OC=2OB,
∴OB=2 ,
∴B(2,0)
代入拋物線解析式得,
解得 ,
∴拋物線的解析式為;
(2)過點D作DE⊥x軸于E,作QF⊥DE于F,
∴四邊形QOEF為矩形
∴QF=OE,QO=FE,
設QF=m,
∵△QDF≌△DPE ,
∴QF=DE=m ,FD=EP,
∵FD=4+t-m,EP=4-t+m,
∴4-t+m=4+t-m,
∴m=t ,
∵OP=4-t,
∴ (0<t<4),
(3)作PL∥OQ ,GM⊥AB于M ,KN⊥AB于N,
∵OC=OA,
∴PL=PA ,
∵PA=CQ,
∴PL=CQ,
∴△PGL≌△QGC,
∴GP=GQ,
∵OG=,
∴PQ=,
在Rt△OPQ中,得(4-t)2+(4+t)2=,
∴t=2 ,
∵△PDG為等腰直角三角形,
∴四邊形PGDK為正方形,
∵OQ=6,
∴GM=3,
∵GP=GO,
∴PM=MO=1,
∵△GMP≌△PNK,
∴GM=PN=3,PM=KN=1,
∴AN=5,ON=1,
∴K(1,-1)
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點,與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.
(1)如圖1,點P是直線BE上方拋物線上一動點,連接PD,PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值;
(2)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內一點,當以點A、M、N、K為頂點的四邊形是正方形時,直接寫出點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B的坐標分別為(4,0),(3,2).
(1)畫出△AOB關于原點O對稱的圖形△COD;
(2)將△AOB繞點O按逆時針方向旋轉90°得到△EOF,畫出△EOF;
(3)點D的坐標是 ,點F的坐標是 ,此圖中線段BF和DF的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】窯溝村對第一季度A、B兩種水果的銷售情況進行統(tǒng)計,兩種水果的銷售量如圖所示.
(1)第一季度B種水果的月平均銷售量是多少噸?
(2)一月A種水果的銷售量是50噸,到三月A種水果的銷售量是72噸,第一季度A種水果的銷售量的月平均增長率相同,求二月A種水果銷售了多少噸?
(3)根據以上信息,請將統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小鳴想每天多做幾套數(shù)學題,媽媽想通過一個游戲決定小鳴多做題的數(shù)量:在一個不透鳴的盒子中放入三張卡片,每張卡片上寫著一個實數(shù),分別為3,,2(每張卡片除了上面的實數(shù)不同以外其余均相同),媽媽讓小鳴從中任意取一張卡片,如果抽到的卡片上的數(shù)是有理數(shù),就讓小鳴每天做五套,否則就多做十套.
(1)請你直接寫出按照媽媽的規(guī)則小鳴每天做五套數(shù)學題的概率;
(2)小鳴想和媽媽重新約定游戲規(guī)則:自己從盒子中隨機抽取兩次,每次抽取一張卡片,第一次抽取后記下卡片上的數(shù),再將卡片放回盒中抽取第二次,如果抽取的兩數(shù)之積是有理數(shù),自己每天做五套數(shù)學題,否則每天做十套.用列表法或樹狀圖法求按此規(guī)則小鳴每天做十套數(shù)學題的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點E按順時針方向旋轉,當旋轉到EF與AD重合時停止轉動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當旋轉停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長為半徑畫弧;②以C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結BD,與AC交于點E,連結AD,CD
(1)求證:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,BC=2;
①求∠BAD所對的弧BD的長;②直接寫出AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,E是AC上一點,且AE=AB,∠BAC=2∠EBC ,以AB為直徑的⊙O交AC于點D,交EB于點F.
(1)求證:BC與⊙O相切;
(2)若AB=8,BE=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與y軸交于C點,與x軸交于A,B兩點(點A在點B左側),且點A的橫坐標為-1.
(1)求a的值;
(2)設拋物線的頂點P關于原點的對稱點為,求點的坐標;
(3)將拋物線在A,B兩點之間的部分(包括A, B兩點),先向下平移3個單位,再向左平移m()個單位,平移后的圖象記為圖象G,若圖象G與直線無交點,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com