【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點,連結(jié)AP、BP,求AP+BP的最小值.

(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點D,使CD=1,則有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.

請你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:在“問題提出”的條件不變的情況下,AP+BP的最小值為   

(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點P是上一點,求2PA+PB的最小值.

【答案】1;(2;(313

【解析】

試題(1)連結(jié)AD,最短為AD==;

2)連接CP,在CA上取點D,使CD,則有,可證△PCD∽△ACP,得到PDAP,故APBPBPPD,從而APBP的最小值為BD

3)延長OA到點E,使CE6,連接PE、OP,可證△OAP∽△OPE,得到EP2PA,得到2PAPBEPPB,當(dāng)EP、B三點共線時,得到最小值.

試題解析:(1)連結(jié)AD,最短為AD==;

2)連接CP,在CA上取點D,使CD,則有,又∵∠PCD∠ACP∴△PCD∽△ACP,∴PDAP,APBPBPPDAPBP的最小值為BD==;

3)延長OA到點E,使CE6,連接PEOP,則OA=3,∵∠AOP=∠AOP∴△OAP∽△OPE,,∴EP2PA,∴2PAPBEPPB,當(dāng)EP、B三點共線時,取得最小值,為:=13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于AB兩點,連接BO并延長交函數(shù)yk≠0)的圖象于點C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC中,AB=AC,D、E分別是AC、AB上兩點,連結(jié)BD、CE,BD=CE,且BC>BD∠A=48°,∠BCE=36°,則∠ADB的度數(shù)等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過點BBCx軸,垂足為點C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應(yīng)的圓心角是多少;

(4)如果該校九年級共有1200名學(xué)生,請估計選擇以友善為主題的九年級學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在平行四邊形ABCD中,過點BBMAC于點E,交CD于點M,過點DDNAC于點F,交AB于點N

1)求證:四邊形BMDN是平行四邊形;

2)已知AF5EM3,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,AB是直徑,點D在⊙O上,ODBC,過點DDEAB,垂足為E,連接CDOE邊于點F

1)求證:DOE∽△ABC;

2)求證:∠ODF=BDE

3)連接OC.設(shè)DOE的面積為SsinA=,求四邊形BCOD的面積(用含有S的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

同步練習(xí)冊答案