10.若關(guān)于x的方程$\frac{2x}{x-2}$+$\frac{3-m}{2-x}$=3有增根,則增根一定是x=2.

分析 分式方程變形后,找出最簡(jiǎn)公分母,由分式方程有增根,得到x-2=0,求出增根即可.

解答 解:由分式方程有增根,得到x-2=0,即x=2,
則增根為x=2.
故答案為:x=2.

點(diǎn)評(píng) 此題考查了分式方程的增根,增根問題可按如下步驟進(jìn)行:①讓最簡(jiǎn)公分母為0確定增根;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.因天津港爆炸,某省愛心車隊(duì)要把8000噸救援物資運(yùn)到天津港(方案定后,每天的運(yùn)量不變).
(1)從運(yùn)輸開始,每天運(yùn)輸?shù)奈镔Y噸數(shù)為n(單位:噸),運(yùn)輸時(shí)間為t(單位:天),求n與t之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)因爆炸使得到達(dá)目的地的道路受阻,實(shí)際每天比原計(jì)劃少運(yùn)20%,則推遲1天完成任務(wù),求原計(jì)劃完成任務(wù)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.解下列方程
(1)x2-6x+4=0(配方法)
(2)2x2+1=3x
(3)2y2+4y=y+2
(4)(3x+2)(x+3)=x+14.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB=4,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)A,C重合),且始終保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:
(1)△DFE是等腰直角三角形;
(2)四邊形CEDF有可能成為正方形;
(3)四邊形CEDF的面積隨點(diǎn)E的位置的改變而發(fā)生變化;
(4)點(diǎn)C到線段DE的最大距離為$\sqrt{2}$.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,DE∥FG∥BC,且DE、FG把△ABC的面積三等分,若BC=12,則FG的長(zhǎng)是( 。
A.8B.6C.4$\sqrt{6}$D.4$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)y=(2m-1)${x}^{2-{m}^{2}}$+m+3是一次函數(shù),且y隨x的增大而減小,則m的值為( 。
A.±1B.1C.-1D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針方向以每秒2°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針方向以每秒4°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請(qǐng)直接寫出t的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列關(guān)于位似圖形的表述:
①相似圖形一定是位似圖形,位似圖形一定是相似圖形;
②位似圖形一定有位似中心;
③如果兩個(gè)圖形是相似圖形,且每組對(duì)應(yīng)點(diǎn)的連線所在的直線都經(jīng)過同一個(gè)點(diǎn),那么,這兩個(gè)圖形是位似圖形;
④位似圖形上任意兩點(diǎn)與位似中心的距離之比等于位似比.
其中正確命題的序號(hào)是( 。
A.②③B.①②C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.解下列方程:
(1)3+2x=x+5
(2)$\frac{x-7}{4}$-$\frac{5x+8}{2}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案