9.計算$\sqrt{6{x}^{3}}÷2\sqrt{\frac{x}{3}}$的結(jié)果是( 。
A.2$\sqrt{2}$xB.xC.6$\sqrt{2}$xD.$\frac{2\sqrt{2}}{3}$x

分析 根據(jù)二次根式的除法法則求解.

解答 解:原式=$\sqrt{6{x}^{3}÷\frac{4x}{3}}$
=$\sqrt{\frac{9}{2}{x}^{2}}$
=$\frac{2\sqrt{2}}{3}$x.
故選D.

點評 本題考查了二次根式的乘除法,解答本題的關(guān)鍵是掌握二次根式的除法法則.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,在△ABC中,AD是BC邊上的中線,點F在AC上,AF=$\frac{1}{2}$FC,AD與BF交于點E.求證:點E是AD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.(1)已知32x+1=27,求x的值;
(2)已知2a=5,2b=20,2c=8,求a,b,c之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.已知x+y=a,求(2x+2y)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.將下列二次根式中根號外的因數(shù)或因式移至根號內(nèi).
(1)3$\sqrt{3}$;
(2)x$\sqrt{-x}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,在△ABC中,AB=AC,點O為AB邊上一點,OA=2,OB=1,過點A作AD∥BC,且∠COD=∠B.求證:AD•BC=3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.如圖,四邊形ABCD中,AB∥CD,點E是邊AD上的點,BE平分∠ABC,CE平分∠BCD,有下列結(jié)論:①AD=AB+CD,②E為AD的中點,③BC=AB+CD,④BE⊥CE,其中正確的有②③④.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.已知數(shù)軸上,點O為原點,點A對應(yīng)的數(shù)為9,點B對應(yīng)的數(shù)為b,點C在點B右側(cè),長度為2個單位的線段BC在數(shù)軸上移動.
(1)如圖1,當線段BC在O、A兩點之間移動到某一位置時恰好滿足線段AC=OB,求此時b的值;
(2)當線段BC在數(shù)軸上沿射線AO方向移動的過程中,若存在AC-OB=$\frac{1}{2}$AB,求此時滿足條件的b值;
(3)當線段BC在數(shù)軸上移動時,滿足關(guān)系式|AC-OB|=$\frac{7}{11}$|AB-OC|,則此時的b的取值范圍是b≥-2或b>9或b=$\frac{7}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.如圖:△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,CD平分∠ACB交⊙O于點D,交AB于點P.連接AD、BD,AC=5,AB=10.
(1)求$\widehat{BC}$的長度;
(2)過點D作AB的平行線,交CB的延長線于點F,試判斷DF與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案