【題目】某鄉(xiāng)鎮(zhèn)實施產業(yè)扶貧,幫助貧困戶承包了荒山種植某種蘋果到了收獲季節(jié),投入市場銷售時,調查市場行情,發(fā)現(xiàn)該蘋果的銷售不會虧本,且該產品的日銷售量y(千克)與銷售單價x(元)之間滿足一次函數(shù)關系關于銷售單價、日銷售量、日銷售利潤的幾組對應值如表:

銷售單價x(元)

10

15

23

28

日銷售量y(千克)

200

150

70

m

日銷售利潤w(元)

400

1050

1050

400

(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))

1)求y關于x的函數(shù)解析式(要寫出x的取值范圍)及m的值;

2)根據(jù)以上信息,填空:產品的成本單價是   元,當銷售單價x   元時,日銷售利潤w最大,最大值是   元;

3)某農戶今年共采摘蘋果4800千克,該品種蘋果的保質期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蘋果?請說明理由

【答案】1y=﹣10x+3008x30);(28,19,1210;(3)不能銷售完這批蘋果,見解析.

【解析】

1)利用待定系數(shù)法求解可得;

2)根據(jù)總利潤=單件利潤×銷售量列出函數(shù)解析式,并配方成頂點式即可得出最大值;

3)求出在(2)中情況下,即x19時的銷售量,據(jù)此求得40天的總銷售量,比較即可得出答案.

解:(1)設yx的函數(shù)關系式為ykx+b,

將(10,200)、(15,150)代入,得:

解得:,

yx的函數(shù)關系式為y=﹣10x+3008≤x≤30);

2)設每天銷售獲得的利潤為w,

w=(x8y

=(x8)(﹣10x+300

=﹣10x192+1210,

8≤x≤30,

∴當x19時,w取得最大值,最大值為1210;

故答案為:8,191210;

3)由(2)知,當獲得最大利潤時,定價為19/千克,

則每天的銷售量為y=﹣10×19+300110千克,

∵保質期為40天,

∴總銷售量為40×1104400

又∵44004800,

∴不能銷售完這批蘋果.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當正方形CDEF旋轉到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知關于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王同學在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為6的⊙O中,正方形AGDH與正六邊形ABCDEF都內接于⊙O,則圖中陰影部分的面積為( 。

A. 279B. 5418C. 18D. 54

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+4分別交x軸、y軸于A、C兩點,拋物線y=﹣x2+mx+4經過點A,且與x軸的另一個交點為點B.連接BC,過點CCDx軸交拋物線于點D

1)求拋物線的函數(shù)表達式;

2)若點E是拋物線上的點,求滿足∠ECD=∠BCO的點E的坐標;

3)點My軸上且位于點C上方,點N在直線AC上,點P為第一象限內的拋物線上一點,若以點C、M、N、P為頂點的四邊形是菱形,求菱形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)在,某商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.

1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?

2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

3)小張按合算的方案,把這臺冰箱買下,如果紅旗商場還能盈利25%,這臺冰箱的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Cyax2-2axc經過點C(1,2),與x軸交于A(-1,0)、B兩點

(1) 求拋物線C的解析式

(2) 如圖1,直線交拋物線CS、T兩點,M為拋物線CAT之間的動點,過M點作MEx軸于點EMFST于點F,求MEMF的最大值

(3) 如圖2,平移拋物線C的頂點到原點得拋物線C1,直線lykx-2k-4交拋物線C1P、Q兩點,在拋物線C1上存在一個定點D,使∠PDQ=90°,求點D的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的一個社會實踐小組對本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:

等級

非常了解

比較了解

基本了解

不太了解

頻數(shù)

20

35

41

4

1)請根據(jù)調查結果,若該校有學生人,請估計這些學生中“比較了解”垃圾分類知識的人數(shù).

2)在“比較了解”的調查結果里,其中九(1)班學生共有人,其中名男生和名女生,在這人中,打算隨機選出位進行采訪,求出所選兩位同學恰好是1名男生和1名女生的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

同步練習冊答案