【題目】如圖,(1)指出DC和AB被AC所截得的內(nèi)錯角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關(guān)系的角,并指出各是哪兩條直線被哪一條直線所截形成的.
【答案】(1)∠1和∠5;(2)∠DAB和∠9;(3)∠4和∠7是內(nèi)錯角,是直線DC和AB被DB所截形成的;∠2與∠6是內(nèi)錯角,是直線AD和BC被AC所截形成的;∠ADC和∠DAB是同旁內(nèi)角,是直線DC和AB被AD所截形成的
【解析】
(1)根據(jù)內(nèi)錯角就是:兩個角都在截線的兩側(cè),又分別處在被截的兩條直線中間位置的位置的角,可得答案;
(2)根據(jù)同位角就是:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè)的位置的角,可得答案;
(3)根據(jù)同旁內(nèi)角就是:兩個角都在截線的同旁,又分別處在被截的兩條直線中間的位置的角,根據(jù)內(nèi)錯角就是:兩個角都在截線的兩側(cè),又分別處在被截的兩條直線中間位置的位置的角,根據(jù)同位角就是:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè)的位置的角,可得答案.
(1) DC和AB被AC所截得的內(nèi)錯角是∠1和∠5;
(2) AD和BC被AE所截得的同位角是∠DAB和∠9;
(3)∠4和∠7是內(nèi)錯角,是直線DC和AB被DB所截形成的;
∠2與∠6是內(nèi)錯角,是直線AD和BC被AC所截形成的;
∠ADC和∠DAB是同旁內(nèi)角,是直線DC和AB被AD所截形成的.
科目:初中數(shù)學 來源: 題型:
【題目】(1)先化簡,再任意選一個你喜歡的數(shù)作為x的值代入求值.
(2)先化簡,再求值:,其中a2-a=0.
(3)已知y=-x+3.試說明不論x為任何有意義的值,y的值均不變.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知EF∥GH,A、D為GH上的兩點,M、B為EF上的兩點,延長AM于點C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿足的數(shù)量關(guān)系是( )
A. ∠A+∠C+∠D+∠E=360°
B. ∠A+∠D=∠C+∠E
C. ∠A-∠C+∠D+∠E=180°
D. ∠E-∠C+∠D-∠A=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點F是AE的中點,FD、AB的延長線相交于點M,連接MC.
(1)求證:∠FMC=∠FCM;
(2)將條件中的AD⊥DE與(1)中的結(jié)論互換,其他條件不變,命題是否正確?請給出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律.如圖是2018年12月份的日歷,我們?nèi)我膺x擇其中所示的十字形部分,將每個部分中間數(shù)的左右兩數(shù),上下兩數(shù)分別相乘,再把所得的結(jié)果相減.
(1)計算:11×13-5×19;16×18–10×24;(直接寫結(jié)果)
(2)請你用整式的運算對以上的規(guī)律加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=10,AB=8,點E為邊DC上一動點,連接AE,把△ADE沿AE折疊,使點D落在點D′處,當△DD′C是直角三角形時,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求畫圖,并回答問題:
如圖,在同一平面內(nèi)有三點A,B,C.
(1)畫直線AC;
(2)畫射線CB;
(3)過點B作直線AC的垂線BD,垂足為D;
(4)畫線段AB及線段AB的中點E,連接DE;
(5)通過畫圖和測量,與線段DE長度相等的線段有__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com