【題目】如圖,大正方形中,,小正方形中,,在小正方形繞點(diǎn)旋轉(zhuǎn)的過程中,當(dāng)時(shí),線段的長為________

【答案】

【解析】

分兩種情況討論,通過證△AFC∽△AEB,利用對(duì)應(yīng)邊成比例和勾股定理即可算出BE的長.

解:①當(dāng)旋轉(zhuǎn)到如下圖所示時(shí),連接AF、AC,ACEF于點(diǎn)M,

由正方形和正方形可知,

,∠BAC=EAF=45°,

,

∵∠BAC=BAE+EAC=45°,∠EAF=CAF+EAC=45°,

∴∠BAE=CAF,

AFC∽△AEB,

,則CF、G三點(diǎn)共線,

∵正方形和正方形,,,

,,

在直角三角形ACG中,

,

代入,得;

②當(dāng)旋轉(zhuǎn)到如下圖所示時(shí),

,則CF、G三點(diǎn)共線,

由①可知,,∠BAC=EAF=45°,

∴∠EAB=FAC=45°,

∴△AFC∽△AEB,

在直角三角形ACG中,,

,

代入,得

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線為常數(shù))的頂點(diǎn)為,等腰直角三角形的頂點(diǎn)的坐標(biāo)為,的坐標(biāo)為,直角頂點(diǎn)在第四象限.

1)如圖,若該拋物線經(jīng)過、兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;

2)平移(1)中的拋物線,使頂點(diǎn)在直線上滑動(dòng),且與交于另一點(diǎn)

①若點(diǎn)在直線下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以、三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo);

②取的中點(diǎn),連接,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點(diǎn)E為邊DC上不與端點(diǎn)重合的一個(gè)動(dòng)點(diǎn),連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點(diǎn)G,則線段CG的最大值是( )

A.1B.1.5C.4-D.4-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形紙片滿足.將此矩形紙片按下列順序折疊,則圖4的長為___________________(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)就本校學(xué)生對(duì)新冠肺炎防控有關(guān)知識(shí)的了解情況進(jìn)行了一次隨機(jī)抽樣調(diào)查,圖①、圖②是他們根據(jù)采集數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖(A:了解很少,B:了解一般,C:了解較多,D:了解很多).請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

1)求本次抽取的學(xué)生人數(shù);

2)先求出兩類學(xué)生人數(shù),然后將圖②補(bǔ)充完整;

3)在扇形統(tǒng)計(jì)圖中,計(jì)算出部分所對(duì)應(yīng)的扇形圓心角的度數(shù);

4)若該學(xué)校共有1200名學(xué)生,請(qǐng)估計(jì)類的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在中,,連接交于點(diǎn).求證:;并直接寫出______

2)類比探究:如圖2,在中,,連接的延長線于點(diǎn).請(qǐng)判斷的值及的度數(shù).

3)拓展延伸:在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn).若,請(qǐng)直接寫出當(dāng)點(diǎn)與點(diǎn)重合時(shí)的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2,AD=4M點(diǎn)是BC的中點(diǎn),A為圓心,AB為半徑的圓交AD于點(diǎn)E.點(diǎn)P在弧BE上運(yùn)動(dòng),則PM+DP的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC中,AB=AC,∠BAC=45°).先將ABC以點(diǎn)B為旋轉(zhuǎn) 中心,逆時(shí)針旋轉(zhuǎn)90°得到DBE,再將ABC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到AFG,連接DFDG,AE,如圖②.

1)四邊形ABDF的形狀是 ;

2)求證:四邊形AEDG是平行四邊形;

3)若AB=2,=30°,則四邊形AEDG的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,中,正確的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案