【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BC相交于點N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中,
,
∴△DMO≌△BNO(AAS),
∴OM=ON,
∵OB=OD,
∴四邊形BMDN是平行四邊形,
∵MN⊥BD,
∴平行四邊形BMDN是菱形
(2)解:∵四邊形BMDN是菱形,
∴MB=MD,
設(shè)MD長為x,則MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(8﹣x)2+42,
解得:x=5,
所以MD長為5.
【解析】(1)根據(jù)矩形性質(zhì)求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;(2)根據(jù)菱形性質(zhì)求出DM=BM,在Rt△AMB中,根據(jù)勾股定理得出BM2=AM2+AB2 , 推出x2=x2﹣16x+64+16,求出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG.有下列結(jié)論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD= AB2
其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D為△ABC內(nèi)一點,且BD=AD.
(1)求證:CD⊥AB;
(2)∠CAD=15°,E為AD延長線上的一點,且CE=CA.
①求證:DE平分∠BDC;
②若點M在DE上,且DC=DM,請判斷ME、BD的數(shù)量關(guān)系,并給出證明;
③若N為直線AE上一點,且△CEN為等腰三角形,直接寫出∠CNE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點D、E.
(1)若AC=12,BC=15,求△ABD的周長;
(2)若∠B=20°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)拿了兩塊45°的三角尺△MNK,△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=a.
(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為 , 周長為;
(2)將圖1中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖2,此時重疊部分的面積為 , 周長為;
(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中,EB為半圓O的直徑,點A在EB的延長線上,AD切半圓O于點D,BC⊥AD于點C,AB=2,半圓O的半徑為2,則BC的長為( )
A.2
B.1
C.1.5
D.0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=8,BC=4,將長方形沿AC折疊,點D落在D′處.
(1)求證:△AFD′≌△CFB;
(2)求線段BF的長度;
(3)試求出重疊部分△AFC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com