【題目】某商場銷售一批名牌襯衫,平均每天可售出10件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出1件,若商場平均每天要盈利600元,每件襯衫應(yīng)降價多少元?

【答案】平均每天要盈利600元,每件襯衫應(yīng)降價20元

【解析】

試題分析:本題考查一元二次方程解決商品銷售問題,設(shè)每件襯衫應(yīng)降價x,則每件的盈利為(40-x),每天可以售出的數(shù)量為(10+x),由題意得: (40-x)(10+x)=600,解得=10,=20,由于為了擴(kuò)大銷售量,增加盈利,盡快減少庫存,所以=20.

試題解析:(1)設(shè)每件襯衫應(yīng)降價x元,則每件盈利40-x元,每天可以售出10+x,

由題意,得(40-x)(10+x)=600,

即:(x-10)(x-20)=0,

解,得x1=10,x2=20,

為了擴(kuò)大銷售量,增加盈利,盡快減少庫存,所以x的值應(yīng)為20,

所以,若商場平均每天要盈利600元,每件襯衫應(yīng)降價20元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報(bào)社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對“社會主義核心價值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點(diǎn)A(﹣10),B4,0)與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)Px軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m0),過點(diǎn)Px軸的垂線1,交拋物線與點(diǎn)Q

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線1BD于點(diǎn)M,試探究m為何值時,四邊形CQMD是平行四邊形;

3)在點(diǎn)P運(yùn)動的過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB8,∠B60°,PAB上一點(diǎn),BP3,QCD邊上一動點(diǎn),將梯形APQD沿直線PQ折疊,A的對應(yīng)點(diǎn)為A′,當(dāng)CA′的長度最小時,CQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC于點(diǎn)D,點(diǎn)E在邊AB上,CEAD交于點(diǎn)GEFAD于點(diǎn)F,AE5cm,BE10cmBD9cm,CD5cm,求AF、FG、GD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,∠ABC=ACB=36°,改建后頂點(diǎn)DBA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,∠ABC=ACB=36°,改建后頂點(diǎn)DBA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象記為,它與軸交于點(diǎn),;將繞點(diǎn)旋轉(zhuǎn)180°得,交軸于點(diǎn);將繞點(diǎn)旋轉(zhuǎn)180°得,交軸于點(diǎn);……如此進(jìn)行下去,得到一條“波浪線”.在這條“波浪線”上,則____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某次“小學(xué)生書法比賽”的成績情況,隨機(jī)抽取了30名學(xué)生的成績進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:

(1)圖中a的值為   

(2)若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績x在“70≤x<80”所對應(yīng)扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學(xué)生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有   人:

(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學(xué)生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案