分析 由等腰三角形的性質(zhì)和已知條件得出∠B=∠C=∠EAD,證出△ADC∽△BAC,得出對(duì)應(yīng)邊成比例,求出CD的長(zhǎng),即可得出BD的長(zhǎng).
解答 解:∵AB=AC=10,EA=DE,
∴∠B=∠C,∠EAD=∠ADE,
∵∠ADE=∠B,
∴∠B=∠C=∠EAD,
∴△ADC∽△BAC,
∴$\frac{AC}{BC}=\frac{CD}{AC}$,∴AC2=CD•BC
∴CD=$\frac{1{0}^{2}}{16}$=$\frac{25}{4}$,
∴BD=BC=CD=16-$\frac{25}{4}$=$\frac{39}{4}$;
故答案為:$\frac{39}{4}$
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì);熟練掌握等腰三角形的性質(zhì),證明三角形相似是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2b | B. | b | C. | -2a | D. | 2a-b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 6 | C. | 4$\sqrt{2}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (-1,-2) | C. | (-1,2) | D. | (1,-2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com