【題目】(操作發(fā)現(xiàn))如圖(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,連接AC,BD交于點M.
①AC與BD之間的數(shù)量關系為 ;
②∠AMB的度數(shù)為 ;
(類比探究)如圖(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC,交BD的延長線于點M.請計算的值及∠AMB的度數(shù);
(實際應用)如圖(3),是一個由兩個都含有30°角的大小不同的直角三角板ABC、DCE組成的圖形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直線上,CE=1,BC= ,求點A、D之間的距離.
【答案】【操作發(fā)現(xiàn)】①AC=BD;②∠AMB=45°;【類比探究】,∠AMB=90°;【實際應用】4或5
【解析】
操作發(fā)現(xiàn):如圖(1),證明△COA≌△DOB(SAS),即可解決問題.
類比探究:如圖(2),證明△COA∽△ODB,可得,∠MAK=∠OBK,已解決可解決問題.
實際應用:分兩種情形解直角三角形求出BE,再利用相似三角形的性質(zhì)解決問題即可.
解:操作發(fā)現(xiàn):如圖(1)中,設OA交BD于K.
∵∠AOB=∠COD=45°,
∴∠COA=∠DOB,
∵OA=OB,OC=OD,
∴△COA≌△DOB(SAS),
∴AC=DB,∠CAO=∠DBO,
∵∠MKA=∠BKO,
∴∠AMK=∠BOK=45°,
故答案為:AC=BD,∠AMB=45°
類比探究:如圖(2)中,
在△OAB和△OCD中,∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,
∴∠COA=∠DOB,OC=OD,OA=OB,
∴,
∴△COA∽△ODB,
∴,∠MAK=∠OBK,
∵∠AKM=∠BKO,
∴∠AMK=∠BOK=90°.
實際應用:如圖3﹣1中,作CH⊥BD于H,連接AD.
在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,
∴∠CEH=60°,
∵∠CHE=90°,
∴∠HCE=30°,
∴EH=EC=,
∴CH=,
在Rt△BCH中,BH=,
∴BE=BH﹣EH=4,
∵△DCA∽△ECB,
∴AD:BE=CD:EC=,
∴AD=4.
如圖3﹣2中,連接AD,作 CH⊥DE于H.
同法可得BH=,EH=,
∴BE=+=5,
∵△DCA∽△ECB,
∴AD:BE=CD:EC=,
∴AD=5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的邊, , 是上一點, , 是邊上一動點,將梯形沿直線折疊, 的對應點為,當的長度最小時, 的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結論;
(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的頂點A、B、C的坐標分別是A(-1,-1)、B(-4,-3)、C(-4,-1).
(1)將△ABC向右平移三個單位后得到則_________;
(2)畫出△ABC關于原點O中心對稱的圖形.
(3)將△ABC繞原點A按順時針方向旋轉90°后得到畫出則的坐標為_________,的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,任取一點O,連AO,BO,CO,分別取點D,E,F,使OD=AO,OE=BO,OF=CO,得△DEF,有下列說法:
①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;
③△DEF與△ABC的周長比為1:3;④△DEF與△ABC的面積比為1:6.
則正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,在內(nèi)有三個正方形,且這三個正方形都有一邊在上,都有一個頂點在上,點在上,第一個正方形邊長,第二個正方形邊長,那么第三個正方形的邊長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示為某種型號的臺燈的橫截面圖,已知臺燈燈柱AB長30cm,且與水平桌面垂直,燈臂AC長為10cm,燈頭的橫截面△CEF為直角三角形,當燈臂AC與燈柱AB垂直時,沿CE邊射出的光線剛好射到底座B點.若不考慮其它因素,則該臺燈在桌面可照亮的寬度BD的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側的一點,且QH⊥x軸于H,當以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點順時針旋轉105°至OA′B′C′的位置,則點B′的坐標為( 。
A. (,) B. (,) C. (2,-2) D. (,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com