【題目】在平行四邊形中,對角線交于點,,從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當(dāng)一個點停止運動時,另一個點也停止運動.連接,過點,設(shè)運動時間為,

解答下列問題:

(1)當(dāng)為何值時是等腰三角形?

(2)設(shè)五邊形面積為,試確定的函數(shù)關(guān)系式;

(3)在運動過程中,是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由;

(4)在運動過程中,是否存在某一時刻使得平分,若存在,求出的值;若不存在,請說明理由.

【答案】(1) (2) (3)存在; (4)存在;

【解析】

1)分三種情況:,分類討論即可;

2)過點于點,先求出的面積,再求出四邊形的面積,把兩個面積相加即可;

3)過點于點,求出,再求出的面積,由第二問我們可以知道五邊形面積表達式,根據(jù)列出方程即可得出答案;

4)過點于點,平分,利用,得出,設(shè),則,利用,得出的表達式,在中,利用勾股定理列出方程,求出,進而求出,從而得出答案.

解:∵,,,

,

都是直角三角形,

四邊形是平行四邊形,

,

1)當(dāng),

由題意知道:,∴,即;

當(dāng)時,過點于點,則

,,

,

,即:,

解得:;

當(dāng)時,過點于點,則

,

,即,

解得:;

綜上所述:當(dāng)時,是等腰三角形;

(2)過點于點,

,

,

,即,

,

,

,

中,,

,

;

3)存在;

理由如下:

過點于點,

,

,

,

整理得:

解得:,

不能為負數(shù),

舍去,

∴當(dāng)時,;

4)存在;

理由如下:

過點于點,

平分

,

又∵,

,

設(shè),則,

,,

,

,即,

,

中,由勾股定理得:

,即

整理得:,

解得:,(舍去),

不能為負數(shù),∴舍去,

,

∴當(dāng)時,平分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

(1)完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式及售價x的取值范圍;

售價(元/臺)

月銷售量(臺)

400

200

250

x

(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,的三個頂點的坐標分別為,,

1)將向上平移1個單位長度,再向右平移5個單位長度后得到的;直接寫出的坐標;

2)將繞原點順時針方向旋轉(zhuǎn)得到直接寫出的坐標;

3)在軸上存在一點,滿足點與點距離之和最小,請直接寫出點的坐標(學(xué)生可以在練習(xí)本上畫圖,答題卡上直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,對角線相交于點,過點,過點,兩線相交于點;

1)求證:;

2)連接,交于點,若于點,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某斜拉橋引申出的部分平面圖,AE,CD是兩條拉索,其中拉索CD與水平橋面BE的夾角為72°,其底端與立柱AB底端的距離BD4米,兩條拉索頂端距離AC2米,若要使拉索AE與水平橋面的夾角為35°,請計算拉索AE的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin35°≈cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的解析式為,是拋物線上的一個動點,是拋物線對稱軸上的一點.

1)求拋物線的頂點及與軸交點的坐標;

2是過點且平行于軸的直線,與拋物線的對稱軸的交點為,,垂足為點,連接

①當(dāng)是等邊三角形時,求點的坐標;

②求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點PA→B→C→M的順序在邊長為l的正方形邊上運動,MCD邊上中點,設(shè)點P經(jīng)過的路程x為自變量,APM的面積為y,則函數(shù)y的大致圖像是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A90°,ABAC,點DE分別在邊AB,AC上,ADAE,連接DC,點MP,N分別為DEDC,BC的中點.

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;

3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD4AB10,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解2012年全國中學(xué)生創(chuàng)新能力大賽中競賽項目知識產(chǎn)權(quán)筆試情況,隨機抽查了部分參賽同學(xué)的成績,整理并制作圖表如下:

分數(shù)段

頻數(shù)

頻率

60≤x70

30

0.1

70≤x80

90

n

80≤x90

m

0.4

90≤x≤100

60

0.2

請根據(jù)以上圖表提供的信息,解答下列問題:

1)本次調(diào)查的樣本容量為 ;

2)在表中:m= n= ;

3)補全頻數(shù)分布直方圖:

4)參加比賽的小聰說,他的比賽成績是所有抽查同學(xué)成績的中位數(shù),據(jù)此推斷他的成績落在 分數(shù)段內(nèi);

5)如果比賽成績80分以上(含80分)為優(yōu)秀,那么你估計該競賽項目的優(yōu)秀率大約是

查看答案和解析>>

同步練習(xí)冊答案