【題目】如圖,△ABC是等邊三角形,AD是角平分線,△ADE是等邊三角形,下列結論:①AD⊥BC;②EF=FD;③BE=BD.其中正確結論的個數(shù)為( )
A. 3 B. 2 C. 1 D. 0
【答案】A
【解析】試題解析:∵△ABC是等邊三角形,AD是∠BAC的平分線,
∴AD⊥BC,BD=DC,
∴∠ADC=90°.
故① 正確.
∵△ABC和△ADE是等邊三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,
∴∠BAE=∠DAC.
在△BAE和△CAD中,AE=AD,∠EAB=∠DAC,AB=AC,
∴△BAE≌△CAD(SAS),
∴∠DAC=∠BAE,BE=DC.
∵BD=DC,
∴BE=BD.
故③正確.
∵AD是∠BAC的平分線,∠BAC=60°,
∴∠DAC=∠DAB=∠BAE=30°.
∴AB是∠DAE的角平分線.
∵AE=AD,
∴EF=FD(三線合一).
故②正確.
綜上所述,①②③都正確,共3個.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點P,連接DP,作射線PE⊥DP,PE與直線AB交于點E.
(1)試確定當CP=3時,點E的位置;
(2)若設CP=x,BE=y,試寫出y關于自變量x的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( )
A.a2a2=2a2
B.a2+a2=a4
C.(1+2a)2=1+2a+4a2
D.(﹣a+1)(a+1)=1﹣a2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;
(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船沿AC方向航行,輪船在點A時測得航線兩側的兩個燈塔D、E與航線的夾角相等,當輪船到達點B時測得這兩個燈塔與航線的夾角仍然相等,這時輪船與兩個燈塔的距離是否相等?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經過點E的反比例函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com