【題目】如圖,已知等邊△ABC的邊長為4,點(diǎn)P,Q分別是邊BC,AC上一點(diǎn),PB1,則PA_____,若BQAP,則AQ_____

【答案】 3

【解析】

連接AP,過AAD⊥BCD,根據(jù)等邊三角形的性質(zhì)得到BDCDBC42,∠BAD30°,根據(jù)含30°直角三角形的性質(zhì)以及勾股定理可得出PA的長;連接BQ,過BBH⊥ACH,先根據(jù)等邊三角形的性質(zhì)可得出AH的長,在RtBHQ中,根據(jù)勾股定理可求出HQ的長,從而可得出結(jié)果.

解:連接AP,過AADBCD,

∵△ABC是等邊三角形,

BDCDBC42,∠BAD30°,

BD=AB,∴ADAB2

PB1,∴PD1,

PA

連接BQ,過BBHACH

AHAC2,

BHAD2,

HQ1,

AQAH+HQ3,

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車,綠色出行,現(xiàn)如今騎共享單車出行不但成為一種時(shí)尚,也稱為共享經(jīng)濟(jì)的一種新形態(tài),某校九(1班同學(xué)在街頭隨機(jī)調(diào)查了一些騎共享單車出行的市民,并將他們對各種品牌單車的選擇情況繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖(A摩拜單車Bofo單車;CHelloBike.請根據(jù)圖中提供的信息解答下列問題

1求出本次參與調(diào)查的市民人數(shù);

2將上面的條形圖補(bǔ)充完整;

3若某區(qū)有10000名市民騎共享單車出行,根據(jù)調(diào)查數(shù)據(jù)估計(jì)該區(qū)有多少名市民選擇騎摩托單車出行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“太原市批發(fā)市場”與“西安市批發(fā)市場”之間的商業(yè)往來頻繁, 如圖,“太原市批發(fā)市場”“西安市批發(fā)市場”與“長途汽車站”在同一線路上,每天中午12:00一輛客車由“太原市批發(fā)市場”駛往“長途汽車站”,一輛貨車由“西安市批發(fā)市場”駛往“太原市批發(fā)市場”,假設(shè)兩車同時(shí)出發(fā),勻速行駛,圖2分別是客車、貨車到“長途汽車站”的距離與行駛時(shí)間之間的函數(shù)圖像.

請你根據(jù)圖象信息解決下列問題:

1)由圖 2 可知客車的速度為 km/h,貨車的速度為 km/h;

2)根據(jù)圖 2 直接寫出直線 BC 的函數(shù)關(guān)系式為 ,直線 AD 的函數(shù)關(guān)系式為 ;

3)求點(diǎn)B的坐標(biāo),并解釋點(diǎn)B的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)HAH、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計(jì)算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB≌△ADC,點(diǎn)B和點(diǎn)C是對應(yīng)頂點(diǎn),∠O=∠D90°,記∠OADα,∠ABOβ,當(dāng)BCOA時(shí),αβ之間的數(shù)量關(guān)系為( 。

A.αβB.αC.α+β90°D.α+β180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識背景)我國古代把直角三角形較短的直角邊稱為“勾”,較長的的直角邊稱為“股”,斜邊稱為“弦”.據(jù)《周髀算經(jīng)》記載,公元前1000多年就發(fā)現(xiàn)了“勾三股四弦五”的結(jié)論.像3、4、5這樣為三邊長能構(gòu)成直角三角形的3個(gè)正整數(shù),稱為勾股數(shù).

(應(yīng)用舉例)

觀察3,45;5,12,13;724,25

可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,

當(dāng)勾為3時(shí),股,弦;

當(dāng)勾為5時(shí),股,弦;

當(dāng)勾為7時(shí),股,弦

請仿照上面三組樣例,用發(fā)現(xiàn)的規(guī)律填空:

1)如果勾用,且為奇數(shù))表示時(shí),請用含有的式子表示股和弦,則股  ,弦  

(問題解決)

2)古希臘的哲學(xué)家柏拉圖也提出了構(gòu)造勾股數(shù)組的公式.具體表述如下:如果,,為大于1的整數(shù)),則、為勾股數(shù).請你證明柏拉圖公式的正確性;

3)畢達(dá)哥拉斯在他找到的勾股數(shù)的表達(dá)式中發(fā)現(xiàn)弦與股的差為1,若用為任意正整數(shù))表示勾股數(shù)中最大的一個(gè)數(shù),請你找出另外兩個(gè)數(shù)的表達(dá)式分別是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ABC=90oABO的直徑,OAC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長線于點(diǎn)P,∠A=∠PDB

(1)求證:PDO的切線;

(2)若AB=4,DA=DP,試求弧BD的長;

(3)如圖,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 今年清明節(jié)前后某茶葉銷售商在青山茶廠先后購進(jìn)兩批茶葉.第一批茶葉進(jìn)貨用了5.4萬元,進(jìn)貨單價(jià)為a/千克.購回后該銷售商將茶葉分類包裝出售,把其中300千克精裝品以進(jìn)貨單件的兩倍出售;余下的簡裝品以150/千克的價(jià)格出售,全部賣出.第二批進(jìn)貨用了5萬元,這一次的進(jìn)貨單價(jià)每千克比第一批少了20元.購回分類包裝后精裝品占總質(zhì)量的一半,以200/千克的單價(jià)出售;余下的簡裝品在這批進(jìn)貨單價(jià)的基礎(chǔ)上每千克加價(jià)40元后全部賣出.若其它成本不計(jì),第二批茶葉獲得的毛利潤是3.5萬元.

1)用含a的代數(shù)式表示第一批茶葉的毛利潤;

2)求第一批茶葉中精裝品每千克售價(jià).(總售價(jià)-總進(jìn)價(jià)=毛利潤)

查看答案和解析>>

同步練習(xí)冊答案