【題目】某文具店購進、兩種文具進行銷售.若每個種文具的進價比每個種文具的進價少2元,且用900元正好可以購進50種文具和50種文具,

1)求每個種文具和種文具的進價分別為多少元?

2)若該文具店購進種文具的數(shù)量比購進種文具的數(shù)量的3倍還少5個,購進兩種文具的總數(shù)量不超過95個,每個種文具的銷售價格為12元,每個種文具的銷售價格為15元,則將購進的、兩種文具全部售出后,可使總利潤超過371元,通過計算求出該文具店購進、兩種文具有哪幾種方案?

【答案】1)每個種文具的進價為8元,每個種文具的進價為10元;(2)該五金商店有兩種進貨方案:①購進種文具67個,種文具24個;②購進種文具70個,種文具25.

【解析】

1)設每個種文具的進價為元,每個種文具的進價為元,根據(jù)每個種文具的進價比每個種文具的進價少2元,且用900元正好可以購進50種文具和50種文具,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
2)設購進種文具個,則購進種文具個,根據(jù)購進兩種文具的總數(shù)量不超過95個且銷售兩種文具的總利潤超過371元,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,再結(jié)合m為整數(shù)即可得出各進貨方案.

解:(1)設每個種文具的進價為元,每個種文具的進價為元,依題意,得:

解得:.

答:每個種文具的進價為8元,每個種文具的進價為10元;

2)設購進種文具個,則購進種文具個,依題意,得:

解得:.

為整數(shù),

25,70

∴該五金商店有兩種進貨方案:①購進種文具67個,種文具24個;②購進種文具70個,種文具25.

故答案為:(1)每個種文具的進價為8元,每個種文具的進價為10元;(2)該五金商店有兩種進貨方案:①購進種文具67個,種文具24個;②購進種文具70個,種文具25.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】安慶市在精準扶貧活動中,因地制宜指導農(nóng)民調(diào)整種植結(jié)構(gòu),增加種植效益,2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預計每畝的投入與產(chǎn)出如下表:(每畝產(chǎn)出-每畝投入=每畝純收入)

種類

投入(元)

產(chǎn)出(元)

馬鈴薯

1000

4500

蔬菜

1200

5300

1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?

2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.

1)求甲、乙兩種商品每件的價格各是多少元?

2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么最多購買多少件甲種商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,D為邊BA延長線上一點,連接CD,以CD為一邊作等邊三角形CDE,連接AE

1)求證:△CBD≌△CAE

2)判斷AEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設等式在實數(shù)范圍內(nèi)成立,其中a、x、y是兩兩不同的實數(shù),則的值是(  )

A. 3 B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖)不重疊的放在一個底面為長方形(長為a厘米,寬為b厘米)的盒子底部(如圖),盒子底面未被卡片覆蓋的部分用陰影表示,則圖中兩塊陰影部分的周長和是(

A. 4a厘米B. 4b厘米C. 2a+b)厘米D. 4a-b)厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.

(1)請補畫出它的俯視圖,并標出相關(guān)數(shù)據(jù);

(2)根據(jù)圖中所標的尺寸(單位:厘米),計算這個幾何體的全面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高新一中新圖書館在校園書香四溢活動中迎來了借書高潮,上周借書記錄如下表:(超過100冊的部分記為正,少于100冊的部分記為負)

1)上星期借書最多的一天比借書最少的一天多借出圖書多少冊?

2)上星期平均每天借出多少冊書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③S△ABF:S四邊形CDEF=2:5;④cos∠CAD=.其中正確的結(jié)論有( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

同步練習冊答案