【題目】某電商銷(xiāo)售一款夏季時(shí)裝,進(jìn)價(jià)40元/件,售價(jià)110元/件,每天銷(xiāo)售20件,每銷(xiāo)售一件需繳納電商平臺(tái)推廣費(fèi)用a元(a>0).未來(lái)30天,這款時(shí)裝將開(kāi)展“每天降價(jià)1元”的夏令促銷(xiāo)活動(dòng),即從第1天起每天的單價(jià)均比前一天降1元.通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),該時(shí)裝單價(jià)每降1元,每天銷(xiāo)量增加4件.在這30天內(nèi),要使每天繳納電商平臺(tái)推廣費(fèi)用后的利潤(rùn)隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為

【答案】0<a≤5.

【解析】

試題分析:設(shè)未來(lái)30天每天獲得的利潤(rùn)為y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化簡(jiǎn),得

每天繳納電商平臺(tái)推廣費(fèi)用后的利潤(rùn)隨天數(shù)t(t為正整數(shù))的增大而增大,∴≥﹣4×+(260﹣4a)×30+1400﹣20a

解得,a≤5,又∵a>0,即a的取值范圍是:0<a≤5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解分式方程: =3+
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1 , 點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2 ).

(1)直接寫(xiě)出點(diǎn)A1 , B1 , C1的坐標(biāo).
(2)在圖中畫(huà)出△A1B1C1
(3)連接A A1 , 求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件不能判定四邊形ABCD是平行四邊形的是(
A.AB∥CD,AD∥BC
B.AD=BC,AB=CD
C.AB∥CD,AD=BC
D.∠A=∠C,∠B=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為 米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在連接A地與B地的線段上有四個(gè)不同的點(diǎn)D,G,K,Q,下列四幅圖中的實(shí)線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長(zhǎng)的行進(jìn)路線圖是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為2a、寬為2b的長(zhǎng)方形(其中a,b均為正數(shù),且a>b),沿圖中虛線用剪刀均勻分成四塊相同小長(zhǎng)方形,然后按圖2方式拼成一個(gè)大正方形.

(1)你認(rèn)為圖2中大正方形的邊長(zhǎng)為;小正方形(陰影部分)的邊長(zhǎng)為 . (用含a、b的代數(shù)式表示)
(2)仔細(xì)觀察圖2,請(qǐng)你寫(xiě)出下列三個(gè)代數(shù)式:(a﹣b)2 , (a+b)2 , ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗(yàn)證.
(3)已知a+b=4,ab=3.求代數(shù)式a﹣b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):
,﹣3.1416,0,2017,﹣ ,﹣0.23456,10%,10.1,0.67,﹣89
正數(shù)集合:{…}
整數(shù)集合:{…}
分?jǐn)?shù)集合:{…}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠C=90°,∠A∶∠B=1∶2,則∠A=___度.

查看答案和解析>>

同步練習(xí)冊(cè)答案