【題目】某中學(xué)舉行了“校園好聲音”演唱比賽活動,根據(jù)學(xué)生的成績劃分為A、B、CD四個等級,并繪制了不完整的兩種統(tǒng)計(jì)圖.

根據(jù)圖中提供的信息,回答下列問題:

(1)求參加演唱比賽的學(xué)生共有多少人,并把條形圖補(bǔ)充完整;

(2)求出扇形統(tǒng)計(jì)圖中,m= ,n= ;

(3)求出C等級對應(yīng)扇形的圓心角的度數(shù).

【答案】(1)40人, (2)10,40 (3)144°

【解析】

1)由D等級的人數(shù)為12,占比為30%,即可求出參加演唱比賽的學(xué)生個數(shù);再補(bǔ)全直方圖;(2)根據(jù)直方圖中的數(shù)據(jù)即可求出扇形統(tǒng)計(jì)圖中的占比;(3)用C等級的占比乘以360°即可求出其圓心角度數(shù).

解:(1)參加演唱比賽的學(xué)生共有:12÷30%=40(人),

B等級的人數(shù)為:40×20%=8(人),補(bǔ)全條形圖如圖:

2m=×100=10,n=×100=40;

3×360°=144°,

答:C等級對應(yīng)扇形的圓心角的度數(shù)為144°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,DE分別是AC,BC邊上的點(diǎn),且AD=CE,連接BDAE相交于點(diǎn)F。

1)當(dāng)∠ABC=C=60°時,,那么;(直接寫出結(jié)論)

2)當(dāng)ABC為等邊三角形,時,請用含n的式子表示AF,BF的數(shù)量關(guān)系,并說明理由;

3)如圖2,在ABC中,∠ABC=45°,∠ACB=30°,AC=,點(diǎn)EBC上,點(diǎn)DAE的中點(diǎn),當(dāng)∠EDC=30°時,CEDE的數(shù)量關(guān)系為。(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,RtAB′C′是由RtABC繞點(diǎn)A順時針旋轉(zhuǎn)得到的,連接CC′交斜邊于點(diǎn)ECC′的延長線交BB′于點(diǎn)F

(1)證明:△AC C′∽△AB B′;

(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時ACBF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線Ly=ax2+bx1.5(a0)x軸交于點(diǎn)A(-1,0)和點(diǎn)B,頂點(diǎn)為M,對稱軸為直線lx=1.

1)直接寫出點(diǎn)B的坐標(biāo)及一元二次方程ax2+bx1.5=0的解.

2)求拋物線L的解析式及頂點(diǎn)M的坐標(biāo).

3)如圖2,設(shè)點(diǎn)P是拋物線L上的一個動點(diǎn),將拋物線L平移.使它的頂點(diǎn)移至點(diǎn)P,得到新拋物線L′L′與直線l相交于點(diǎn)N.設(shè)點(diǎn)P的橫坐標(biāo)為m

①當(dāng)m=5時,PMPN有怎樣的數(shù)量關(guān)系?請說明理由.

②當(dāng)m為大于1的任意實(shí)數(shù)時,①中的關(guān)系式還成立嗎?為什么?

③是否存在這樣的點(diǎn)P,使PMN為等邊三角形?若存在.請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)k0)在第一象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸,y軸的垂線交一次函數(shù)y=x2的圖象于點(diǎn)A、B.若∠AOB=135°,則k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i1的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、BC、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.

(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號);

(2)求旗桿AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,點(diǎn)E在邊AD上,連接BE,在BE上取點(diǎn)F,連接AF并延長交BDH,且∠AFE60°,過CCGBD,直線CG、AF交于G

(1)求證:∠FAE=∠EBA

(2)求證:AHBE;

(3)AE3,BH5,求線段FG的長.

查看答案和解析>>

同步練習(xí)冊答案