【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D為⊙O上的一點,CD=CB,延長CDBA的延長線于點E,

(1)求證:CD為⊙O的切線;

(2)若EA=BO=2,求圖中陰影部分的面積(結(jié)果保留π)

【答案】(1)證明見解析;(2)陰影部分的面積為

【解析】分析:(1)由于D是圓上一點,說明CD為⊙O的切線需證明OD⊥CE.可通過證明△CDO≌△CBO實現(xiàn);
(2)由于陰影部分的面積=S扇形BOD-S△BOD,圓心角∠DOB的度數(shù)可通過外角及Rt△ODE中邊間關(guān)系得到.

詳解:

1)如圖所示:連接OD、OC

∵點D在圓上,B為切點,

OD=OB,OBBC

在△COD和△COB中,

∴△CDO≌△CBO,

∴∠ODC=OBC=90°,

又∵OD=OB

CD為⊙O的切線;

2)∵EA=BO=2,OA=OD=OB,∠ODC=EDO=90°,

RtEDO中,∵OE=2OB=2OD

∴∠E=30°,

∴∠DOB=EDO+E=120°

S扇形BOD=,

SBOD=×OD2×sin60°=,

S陰影=S扇形BODSBOD=

答:陰影部分的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運動,E、F分別是ACBD的中點.

(1)若AC=4cm,則EF=_________cm.

(2)當(dāng)線段CD在線段AB上運動時,試判斷EF的長度是否發(fā)生變化?如果不變請求出EF的長度,如果變化,請說明理由.

(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知內(nèi)部轉(zhuǎn)動,OE、OF分別平分,則有何關(guān)系,請直接寫出_______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.

(1)求A,B兩點的坐標(biāo);

(2)過B點作直線與x軸交于點P,若ABP的面積為,試求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若(1)中所作的角平分線交AD于點E,AFBE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個批發(fā)兼零售的文具店規(guī)定:凡一次購買鉛筆300枝以上,(不包括300枝),可以按批發(fā)價付款,購買300枝以下,(包括300枝)只能按零售價付款。小明來該店購買鉛筆,如果給八年級學(xué)生每人購買1枝,那么只能按零售價付款,需用120元,如果購買60枝,那么可以按批發(fā)價付款,同樣需要120元,

1) 這個八年級的學(xué)生總數(shù)在什么范圍內(nèi)?

2) 若按批發(fā)價購買6枝與按零售價購買5枝的款相同,那么這個學(xué)校八年級學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動:

①一次性購書不超過100元,不享受打折優(yōu)惠;

②一次性購書超過100元但不超過200元,一律按原價打九折;

③一次性購書超過200元,一律按原價打七折.

小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直立于地面上的電線桿,在陽光下落在水平地面和坡面上的影子分別是.測得, , ,在D處測得電線桿頂端A的仰角為,則電線桿的高度為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有若干套損壞的桌椅,現(xiàn)有甲、乙兩名木工,甲每天可以修桌椅16套,乙每天比甲多修桌椅8套,甲單獨修完這些桌椅比乙單獨修完多用10天,學(xué)校每天付甲80元修理費,付乙120元修理費.

1)這批損壞的桌椅有多少套?(列方程解答)

2)在修理過程中,學(xué)校要派一名工作人員進行質(zhì)量監(jiān)督,學(xué)校負擔(dān)他每天30元生活補助費,現(xiàn)有兩種修理方案:

①由乙單獨修理;

②甲、乙合作同時修理.

你認為哪種方案省錢?試通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點GBC邊上任意一點,DE⊥AG于點EBF∥DE且交AG于點F

1)求證:AE=BF;

2)如圖1,連接DF、CE,探究線段DFCE的關(guān)系并證明;

3)如圖2,若AB=,GCB中點,連接CF,直接寫出四邊形CDEF的面積.

查看答案和解析>>

同步練習(xí)冊答案