【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.

【答案】
(1)解:根據(jù)題意得

解得k=﹣1,b=120.

所求一次函數(shù)的表達(dá)式為y=﹣x+120.


(2)解:W=(x﹣60)(﹣x+120)

=﹣x2+180x﹣7200

=﹣(x﹣90)2+900,

∵拋物線的開口向下,

∴當(dāng)x<90時,W隨x的增大而增大,

而銷售單價不低于成本單價,且獲利不得高于45%,

即60≤x≤60×(1+45%),

∴60≤x≤87,

∴當(dāng)x=87時,W=﹣(87﹣90)2+900=891.

∴當(dāng)銷售單價定為87元時,商場可獲得最大利潤,最大利潤是891元.


(3)解:由W≥500,得500≤﹣x2+180x﹣7200,

整理得,x2﹣180x+7700≤0,

而方程x2﹣180x+7700=0的解為 x1=70,x2=110.

即x1=70,x2=110時利潤為500元,而函數(shù)y=﹣x2+180x﹣7200的開口向下,所以要使該商場獲得利潤不低于500元,銷售單價應(yīng)在70元到110元之間,

而60元/件≤x≤87元/件,所以,銷售單價x的范圍是70元/件≤x≤87元/件.


【解析】(1)列出二元一次方程組解出k與b的值可求出一次函數(shù)的表達(dá)式.(2)依題意求出W與x的函數(shù)表達(dá)式可推出當(dāng)x=87時商場可獲得最大利潤.(3)由w=500推出x2﹣180x+7700=0解出x的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點GBC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.

(1)求證:DE=AF;

(2)若AB=4,BG=3,求AF的長;

(3)如圖2,連接DF、CE,判斷線段DFCE的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體是由4個相同的小正方體搭成的,其中主視圖和左視圖相同的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點D為BC邊上一點,且BD=2AD,,求的周長(保留根號)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數(shù)量關(guān)系是_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個交點;
②如果將它的圖象向左平移3個單位后過原點,則m=1;
③如果當(dāng)x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】E、F分別是□ABCD的邊BC、CD上的點,∠EAF=60°,AF=4

(1) AB=2,點E與點B、點F與點D分別重合,求平行四邊形ABCD的面積

(2) AB=BC,∠B=∠EAF=60°,求證:△AEF為等邊三角形

(3) BE=CE,CF=2DF,AB=3,直接寫出AE的長度(無需解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學(xué)生對四種項目的喜歡情況,隨機調(diào)查了該校m名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學(xué)生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據(jù)圖表中提供的信息,解答下列問題:

(1)m= , n= , p=;
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

同步練習(xí)冊答案