精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,,,點D為BC邊上一點,且BD=2AD,,求的周長(保留根號)。

【答案】

【解析】

要求△ABC的周長,只要求得BCAB的長度即可.根據含30°的直角三角形的性質,可以求得AD的長度,也可求得CD的長度;再根據已知條件求得BD的長度,繼而求得BC的長度;運用勾股定理可以求得AB的長度,求得△ABC的周長.

解:在Rt△ABC中,∠C=90°,則由勾股定理得AD2=AC2+CD2,

∵∠DAC=30°,

∴AD=2DC,

AC= 得:DC=1,AD=2,BD=2AD=4,BC=BD+DC=5,

Rt△ABC中,∠C=90°,AC=,BC=5

由勾股定理得:AB=,

所以Rt△ABC的周長為AB+BC+AC=2+5+

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+6x與x軸交于點O,A,頂點為B,動點E在拋物線對稱軸上,點F在對稱軸右側拋物線上,點C在x軸正半軸上,且EF OC,連接OE,CF得四邊形OCFE.

(1)求B點坐標;
(2)當tan∠EOC= 時,顯然滿足條件的四邊形有兩個,求出相應的點F的坐標;
(3)當0<tan∠EOC<3時,對于每一個確定的tan∠EOC值,滿足條件的四邊形OCFE有兩個,當這兩個四邊形的面積之比為1:2時,求tan∠EOC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC,C=90°,AD平分∠BAC,DEABE,則下列結論:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了解學生的課外閱讀情況,隨機抽取了50名學生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數據繪制成如下不完整的統(tǒng)計表.

課外閱讀時間t

頻數

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合計

50

100%

請根據圖表中提供的信息回答下列問題:

1a=   ,b=   ;

(2)將頻數分布直方圖補充完整;

(3)若全校有900名學生,估計該校有多少學生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某酒店有三人間、雙人間客房若干,各種房型每天的收費標準如下:

普通(元/間) 

 豪華(元/間)

三人間 

160

400

雙人間

140

300

一個50人的旅游團到該酒店入住,選擇了一些三人普通間和雙人豪華間入住,且恰好住滿.已知該旅游團當日住宿費用共計4020元,問該旅游團入住的三人普通間和雙人豪華間各為幾間?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)符合一次函數y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一項工程,甲,乙兩公司合作,12天可以完成;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,要使乙公司的總施工費較少,則甲公司每天的施工費應低于多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】北京奧運會期間,某旅行社組團去北京觀看某場足球比賽,入住某賓館.已知該賓館一樓房間比二樓房間少5間,該旅游團有48人,若全部安排在一樓,每間住4人,房間不夠,每間住5人,有房間沒住滿.若全部安排在二樓,每間住3人,房間不夠,每間住4人,則有房間沒住滿.你能根據以上信息確定賓館一樓有多少房間嗎?

查看答案和解析>>

同步練習冊答案