已知:如圖,二次函數(shù)的圖象是由y=-x2向右平移1個單位,再向上平移4個單位所得到.
(1)求二次函數(shù)的解析式;
(2)若點P是拋物線對稱軸l上一動點,求使AP+CP最小的點P的坐標.
(1)二次函數(shù)的解析式:y=-(x-1)2+4,對稱軸為直線x=1;

(2)連接BC,交對稱軸于點P,連接AP、AC.
要使PA+PC最。
∵點A關(guān)于對稱軸x=1的對稱點是點B(3,0),拋物線y=-x2+2x+3與y軸交點C的坐標為(0,3).
∴由幾何知識可知,PA+PC=PB+PC為最小
設(shè)直線BC的解析式為y=kx+3,將B(3,0)代入3k+3=0,得k=-1.
∴y=-x+3,
∴當x=1時,y=2.
∴點P的坐標為(1,2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(A)拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQOC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍.
(3)對于二次三項式x2-10x+36,小明同學(xué)作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于11.你是否同意他的說法?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=x2+bx+c的圖象如圖所示.
(1)求此二次函數(shù)的解析式;
(2)求此二次函數(shù)圖象與x軸的交點,當x滿足什么條件時,函數(shù)值y<0;
(3)把此拋物線向上平移多少個單位時,拋物線與x軸只有一個交點?并寫出平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2+2x-3與x軸的兩個交點分別為A、B,點A在點B的左側(cè),與y軸交于點C,頂點為D,直線y=kx+b經(jīng)過點A、C;
(1)求點D的坐標和直線AC的解析式;
(2)點P為拋物線上的一個動點,求使得△ACP的面積與△ACD的面積相等的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=x2的頂點為P,A、B是拋物線上兩點,ABx軸,四邊形ABCD為矩形,CD邊經(jīng)過點P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時,矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
3
3
x2+
2
3
3
x-
3
交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求點A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉(zhuǎn)180°,得到四邊形AEBC,求E點的坐標;
(3)試判斷四邊形AEBC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設(shè)AB邊長為x米,則菜園的面積y(米2)與x(米)的關(guān)系式為______.(不要求寫出自變量x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在邊長為4的正方形EFCD上截去一角,成為五邊形ABCDE,其中AF=2,BF=1,在AB上取一點P,設(shè)P到DE的距離PM=x,P到CD的距離PN=y,試寫出矩形PMDN的面積S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=-x2+2(m+1)x+m+3與x軸交于A,B兩點,若OA:OB=3:1,求m的值.______.

查看答案和解析>>

同步練習(xí)冊答案