已知:拋物線y=x2+2x-3與x軸的兩個交點分別為A、B,點A在點B的左側,與y軸交于點C,頂點為D,直線y=kx+b經(jīng)過點A、C;
(1)求點D的坐標和直線AC的解析式;
(2)點P為拋物線上的一個動點,求使得△ACP的面積與△ACD的面積相等的點P的坐標.
(1)由拋物線解析式y(tǒng)=x2+2x-3=(x+1)2-4,
得D(-1,-4);(1分)
點A、C的坐標分別是A(-3,0),C(0,-3),
∵直線y=kx+b經(jīng)過A、C兩點,
b=-3
-3k-3=0
,
b=-3
k=-1
;
∴直線AC的解析式為y=-x-3;(2分)

(2)①過點D作與直線y=-x-3平行的直線,交拋物線于點P;
則S△ACP=S△ACD;
設平移后的直線的解析式為y=-x+t,
∵點D的坐標為(-1,-4);
∴t=-5;
∴P(m,-m-5),
∴-m-5=m2+2m-3,
解得m=-1(舍去)或m=-2;
∴P(-2,-3);(4分)
②直線DP:y=-x-5與y軸的交點坐標為(0,-5),
則直線DP關于直線y=-x-3對稱的直線l的解析式為y=-x-1,l交拋物線于P′,設P′(m′,-m′-1);
由于點P’在拋物線y=x2+2x-3上,
∴-m′-1=m′2+2m′-3;
解得m′=
-3+
17
2
或m′=
-3-
17
2
;(5分)
∴P′(
-3+
17
2
1-
17
2
)或P′(
-3-
17
2
,
1+
17
2
);(7分)
∴所求點P的坐標分別是(-2,-3),(
-3+
17
2
,
1-
17
2
),(
-3-
17
2
,
1+
17
2
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)的圖象是由y=-x2向右平移1個單位,再向上平移4個單位所得到.
(1)求二次函數(shù)的解析式;
(2)若點P是拋物線對稱軸l上一動點,求使AP+CP最小的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2-x+c經(jīng)過點Q(-2,
3
2
),且它的頂點P的橫坐標為-1.設拋物線與x軸相交于A、B兩點,如圖.
(1)求拋物線的解析式;
(2)求A、B兩點的坐標;
(3)設PB于y軸交于C點,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠ACC′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構.根據(jù)市場調查,這種許愿瓶一段時間內的銷售量y(個)與銷售單價x(元/個)之間的對應關系如圖所示:
(1)試判斷y與x之間的函數(shù)關系,并求出函數(shù)關系式;
(2)若許愿瓶的進價為6元/個,按照上述市場調查的銷售規(guī)律,求銷售利潤w(元)與銷售單價x(元/個)之間的函數(shù)關系式;
(3)在(2)的條件下,若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD的長AB=4cm,寬AD=2cm.O是AB的中點,OP⊥AB,兩半圓的直徑分別為AO與OB.拋物線的頂點是O,關于OP對稱且經(jīng)過C、D兩點,則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

設函數(shù)y=x2-(2k+1)x+2k-4的圖象如圖所示,它與x軸交于A,B兩點,且線段OA與OB的長度之比為1:3,則k=______.

查看答案和解析>>

同步練習冊答案