【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖像交于A、B兩點,與x軸交于點C,已知點A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,﹣1)是反比例函數(shù)圖像上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.
【答案】
(1)解:將點A的坐標(biāo)代入y=x﹣1,可得:m=﹣1﹣1=﹣2,
將點A(﹣1,﹣2)代入反比例函數(shù)y= ,可得:k=﹣1×(﹣2)=2,
故反比例函數(shù)解析式為:y= .
(2)解:將點P的縱坐標(biāo)y=﹣1,代入反比例函數(shù)關(guān)系式可得:x=﹣2,
將點F的橫坐標(biāo)x=﹣2代入直線解析式可得:y=﹣3,
故可得EF=3,CE=OE+OC=2+1=3,
故可得S△CEF= CE×EF= .
【解析】(1)將點A的坐標(biāo)代入直線解析式求出m的值,再將點A的坐標(biāo)代入反比例函數(shù)解析式可求出k的值,繼而得出反比例函數(shù)關(guān)系式;(2)將點P的縱坐標(biāo)代入反比例函數(shù)解析式可求出點P的橫坐標(biāo),將點P的橫坐標(biāo)和點F的橫坐標(biāo)相等,將點F的橫坐標(biāo)代入直線解析式可求出點F的縱坐標(biāo),將點的坐標(biāo)轉(zhuǎn)換為線段的長度后,即可計算△CEF的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中: ①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③甲隊比乙隊提前3天完成任務(wù);
④當(dāng)x=2或6時,甲乙兩隊所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+x+c的圖像與x軸的一個交點為(2,0),則它與x軸的另一個交點坐標(biāo)是( )
A.(1,0)
B.(﹣1,0)
C.(2,0)
D.(﹣3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點B(4,2),BA⊥x軸于A.
(1)畫出將△OAB繞原點旋轉(zhuǎn)180°后所得的△OA1B1 , 并寫出點B1的坐標(biāo);
(2)將△OAB平移得到△O2A2B2 , 點A的對應(yīng)點是A2(2,﹣4),點B的對應(yīng)點B2在坐標(biāo)系中畫出△O2A2B2;并寫出B2的坐標(biāo);
(3)△OA1B1與△O2A2B2成中心對稱嗎?若是,請直接寫出對稱中心點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的盒子中有2枚黑棋,x枚白棋,這些棋子除顏色外無其他差別,現(xiàn)從盒中隨機摸出一枚棋子(不放回),再隨機摸出一枚棋子.
(1)若“摸出兩枚棋子的顏色都是白色”是不可能事件,請寫出符合條件的一個x值;
(2)當(dāng)x=2時,“摸出兩枚棋子的顏色相同”與“摸出兩枚棋子的顏色不同”的概率相等嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2 , 以直線l1上的點A為圓心、適當(dāng)長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=( )
A.23°
B.46°
C.67°
D.78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.隨機拋擲一枚硬幣,反面一定朝上
B.數(shù)據(jù)3,3,5,5,8的眾數(shù)是8
C.某商場抽獎活動獲獎的概率為 ,說明毎買50張獎券中一定有一張中獎
D.想要了解廣安市民對“全面二孩”政策的看法,宜采用抽樣調(diào)查
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com