【題目】如圖,每個小正方形邊長均為1,則下列圖中的三角形(陰影部分)與圖中△ABC相似的是(
A.
B.
C.
D.

【答案】B
【解析】解:由勾股定理得:AB= = ,BC=2,AC= = , ∴AC:BC:AB=1: ,
A、三邊之比為1: :2 ,圖中的三角形(陰影部分)與△ABC不相似;
B、三邊之比:1: ,圖中的三角形(陰影部分)與△ABC相似;
C、三邊之比為 :3,圖中的三角形(陰影部分)與△ABC不相似;
D、三邊之比為2: ,圖中的三角形(陰影部分)與△ABC不相似.
故選B.
【考點精析】解答此題的關鍵在于理解相似三角形的判定的相關知識,掌握相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,過點A作AD⊥BC,垂足為點D,延長AD至點E,使DE= AD,過點A作AF∥BC,交EC的延長線于點F.
(1)設 = , = ,用 、 的線性組合表示 ;
(2)求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4).延長CB交x軸于點A1 , 作第二個正方形A1B1C1C;延長C1B1交x軸于點A2 , 作第三個正方形A2B2C2C1 , …,按這樣的規(guī)律進行下去,第2016個正方形的面積為(
A.20×( 4030
B.20×( 4032
C.20×( 2016
D.20×( 2015

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。

A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+ )米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為 米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B是直線l上的兩點,AB=4厘米,過l外一點C作CD∥l,射線BC與l所組成的銳角為60°,線段BC=2厘米,動點P、Q分別從B、C同時出發(fā),P以1厘米/秒的速度,沿由B向C的方向運動;Q以2厘米/秒的速度,沿由C向D的方向運動,設P、Q運動的時間為t秒,當t>2時,PA交CD于點E.
(1)用含t的代數(shù)式分別表示CE和QE的長;
(2)求△APQ的面積s與t的函數(shù)表達式;
(3)當QE恰好平分△APQ的面積時,QE的長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖像交于A、B兩點,與x軸交于點C,已知點A的坐標為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,﹣1)是反比例函數(shù)圖像上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進行海上搜救,分別在A、B兩個探測點探測到C處是信號發(fā)射點,已知A、B兩點相距400m,探測線與海平面的夾角分別是30°和60°,若CD的長是點C到海平面的最短距離.
(1)問BD與AB有什么數(shù)量關系,試說明理由;
(2)求信號發(fā)射點的深度.(結果精確到1m,參考數(shù)據: ≈1.414, ≈1.732)

查看答案和解析>>

同步練習冊答案