【題目】已知:CP是等邊△ABC的外角∠ACE的平分線,點(diǎn)D在邊BC上,以D為頂點(diǎn),DA為一條邊作∠ADF=60°,另一邊交射線CP于F
(1)求證:AD=FD
(2)若AB=2,BD=x,DF=y,求y關(guān)于x的函數(shù)解析式
(3)若點(diǎn)D在線段BC的延長(zhǎng)線上,(1)中的結(jié)論還一定成立嗎?若成立,請(qǐng)證明.
【答案】(1)見(jiàn)解析;(2);(3)成立,證明見(jiàn)解析.
【解析】
(1)利用外角平分線得:∠ACP=∠PCE=60°,證明A、D、C、F四點(diǎn)共圓,從而得出△ADF是等邊三角形,所以AD=FD;
(2)作AM⊥BC于M.證明AD2=AEAB,即可解決問(wèn)題;
(3)同(1)得:A、C、D、F四點(diǎn)共圓,則△ADF 是等邊三角形,所以AD=FD.
(1)連接AF,
∵∠ACB=60°,
∴∠ACE=120°,
∵CP平分∠ACE,
∴∠ACP=∠PCE=60°,
∴∠ADF=∠ACP=60°,
∴A、D、C、F四點(diǎn)共圓,
∴∠AFD=∠ACB=60°,
∴∠ADF=∠AFD=60°,
∴∠DAF=60°,
∴△ADF是等邊三角形,
∴AD=FD;
(2)過(guò)A作AM⊥BC于M,如圖,
∵△ABC是等邊三角形,
∴BC=AB=2,BM=BC=1,
∴AM=
∵BD=x,
∴MD=x-1,
∵△ADF是等邊三角形,
∴AD=DF=y,
在Rt△AMD中,
∴,即;
(3)如圖,
同(1)得:∠ADF=∠ACF=60°,
∴A、C、D、F四點(diǎn)共圓,
∴∠FAD=∠FCD=60°,
∴∠AFD=60°,
∴△ADF 是等邊三角形,
∴AD=FD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=2x2﹣8x+m滿足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)6<x<7時(shí),它的圖象位于x軸的上方,則m的值為( 。
A. 8 B. ﹣10 C. ﹣42 D. ﹣24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,的垂直平分線交的平分線于點(diǎn),過(guò)作于點(diǎn),若,,則( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防“感冒”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖,F(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6毫克,請(qǐng)根據(jù)題中提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為_(kāi)__,自變量x的取值范圍是___;藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_(kāi)__.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)___分鐘后,學(xué)生才能回到教室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)畫(huà)出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
① 當(dāng)x取什么值時(shí),y>0 ?
② 當(dāng)x取什么值時(shí),y的值隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②DE長(zhǎng)度的最小值為4;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結(jié)論是( 。
A.①②③B.①③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AE=BE,∠AED =∠ABC.
(1)求證:BD平分∠ABC;
(2)若AB = CB,∠AED =4∠EAD,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一條直線過(guò)點(diǎn),且與拋物線交于,兩點(diǎn),其中點(diǎn)的橫坐標(biāo)是.
求這條直線的函數(shù)關(guān)系式及點(diǎn)的坐標(biāo).
在軸上是否存在點(diǎn),使得是直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
過(guò)線段上一點(diǎn),作軸,交拋物線于點(diǎn),點(diǎn)在第一象限,點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時(shí),的長(zhǎng)度最大?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com