【題目】如圖是某二次函數(shù)的圖象,將其向左平移個(gè)單位后的圖象的函數(shù)解析式為,則下列結(jié)論中正確的有( )
;;;.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
【答案】D
【解析】
如圖是y=ax2+bx+c(a≠0)的圖象,根據(jù)開口方向向上知道a>0,又由與y軸的交點(diǎn)為在y軸的負(fù)半軸上得到c<0,由對稱軸可以得到2ab=0,又當(dāng)x=1時(shí),可以判斷a+b+c的值.由此可以判定所有結(jié)論正確與否.
(1)∵將其向左平移2個(gè)單位后的圖象的函數(shù)解析式為y=ax2+bx+c(a≠0)(如虛線部分),
∴y=ax2+bx+c的對稱軸為:直線x=1;
∵開口方向向上,
∴a>0,故①正確;
(2)∵與y軸的交點(diǎn)為在y軸的負(fù)半軸上
∴c<0,故②正確;
(3)∵對稱軸
∴2ab=0,故③正確;
(4)當(dāng)x=1時(shí),y=a+b+c>0,故④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對于已知拋物線,給出如下信息:;;;.其中錯(cuò)誤的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是AB上的點(diǎn),過點(diǎn)D作DE⊥AB交BC于點(diǎn)F,交AC的延長線于點(diǎn)E,連接CD,∠DCA=∠DAC,則下列結(jié)論:①∠DCB=∠B;②CD=AB;③△ADC是等邊三角形;④若∠E=30°,則DE=EF+CF.正確的有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E是BC邊上的一個(gè)動(dòng)點(diǎn),連接AE,將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AF,連接EF,交對角線BD于點(diǎn)G,連接AG.
(1)根據(jù)題意補(bǔ)全圖形;
(2)判定AG與EF的位置關(guān)系并證明;
(3)當(dāng)AB=3,BE=2時(shí),求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,點(diǎn)D是等邊△ABC的邊AB上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AE與BD有怎樣的數(shù)量關(guān)系?說明理由.
(2)類比猜想:如圖②,若點(diǎn)D是等邊△ABC的邊BA延長線上一動(dòng)點(diǎn),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,請直接寫出AE與BD滿足的數(shù)量關(guān)系,不必說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點(diǎn)E是∠AOB的平分線上一點(diǎn),ED⊥OA,EC⊥OB,垂足分別為C、D.
求證:(1)OC=OD;
(2)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=DC,BF=CE,需補(bǔ)充一個(gè)條件,就能使△ABE≌△DCF,小明給出以下四個(gè)答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正確的是( )
A.①②③④B.①②③C.①②D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點(diǎn)為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com