【題目】如圖,點的坐標為,點分別在軸,軸的正半軸上運動,且,下列結論:

②當時四邊形是正方形

③四邊形的面積和周長都是定值

④連接,,則,其中正確的有(

A.①②B.①②③C.①②④D.①②③④

【答案】A

【解析】

PPMy軸于M,PNx軸于N,易得出四邊形PMON是正方形,推出OM=OM=ON=PN=2,證得△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=4,當OA=OB時,OA=OB=2,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=4,然后依據(jù)APPB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.

PPMy軸于MPNx軸于N,


P(2,2),
PN=PM=2
x軸⊥y軸,
∴∠MON=PNO=PMO=90°,

則四邊形MONP是正方形,
OM=ON=PN=PM=2,
∵∠MPN=APB=90°,
∴∠MPA=NPB
在△MPA≌△NPB中,

,
∴△MPA≌△NPB,
PA=PB,故①正確.
∵△MPA≌△NPB,
AM=BN,
OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=2+2=4
OA=OB,即OA=OB=2時,

則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB

OA+OB=4,PA=PB,且PAPB的長度會不斷的變化,故周長不是定值,故③錯誤.
∵∠AOB+APB=180°,
∴點A、O、B、P共圓,且AB為直徑,所以AB≥OP,故④錯誤.
故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校開設“慈善基金”活動以來,受到同學們的廣泛幫助,學校為了解全校學生捐款的情況,隨機調查了部分學生的捐款金額,并制成如圖不完整的統(tǒng)計圖表.

捐款金額

1

2

3

4

5元及以上

人數(shù)

7

13

a

10

3

請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

1a b ;

2)該調查統(tǒng)計數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;

3)請計算扇形統(tǒng)計圖中的3元所對應的圓心角的度數(shù);

4)若該校共有2000名學生,根據(jù)調查結果,統(tǒng)計該校學生在5元及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片中,,將沿折疊,使點落在點處,于點,則的長等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系內的點滿足橫、縱坐標都為整數(shù),則把點叫做 “整點”.例如:都是“整點”,拋物線)與軸交于兩點,若該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個整點,則的取值范圍是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,的弦,過點的切線延長線于點

(Ⅰ)若,求的度數(shù);

(Ⅱ)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對隔離直線給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線滿足,則稱直線是圖形隔離直線,如圖,直線是函數(shù)的圖像與正方形的一條隔離直線”.

1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形隔離直線的為 .

2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O隔離直線?若存在,求出此隔離直線的表達式:若不存在,請說明理由;

3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形隔離直線,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,點軸的正半軸上,將線段繞點順時針旋轉90°得到,過點軸的垂線,垂足為,連接軸于點

1)當點在第三象限時,求實數(shù)的取值范圍;

2)在(1)的條件下,設,當取得最大值時,求圖象經過兩點的二次函數(shù)的解析式;

3)在(2)的條件下,將直線向上平移個單位后與二次函數(shù)的圖象交點的橫坐標為,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC90°,對角線AC、BD交于點O,AOCOCDBD,如果CD3,BC5,那么AB_____

查看答案和解析>>

同步練習冊答案