【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)叫做 “整點(diǎn)”.例如:、都是“整點(diǎn)”,拋物線)與軸交于兩點(diǎn),若該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則的取值范圍是( 。

A.B.

C.D.

【答案】D

【解析】

首先將二次函數(shù)的表達(dá)式化為頂點(diǎn)式,確定函數(shù)的頂點(diǎn),可以直接得到三點(diǎn)必在該拋物線在之間的部分與線段所圍成的區(qū)域內(nèi)(包括邊界),然后向外擴(kuò)充4個(gè)整點(diǎn),找到,最后結(jié)合圖象確定函數(shù)與x軸的交點(diǎn)A的橫坐標(biāo)范圍,進(jìn)而求出m的范圍,一定要結(jié)合點(diǎn)是邊界點(diǎn)時(shí),m的取值,否則會(huì)使m的范圍過大.

由題意可得

∴函數(shù)的頂點(diǎn)是

∴點(diǎn)三點(diǎn)必在該拋物線在之間的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)

∵在此區(qū)域有7個(gè)整點(diǎn)

∴必有點(diǎn)

∴當(dāng)點(diǎn)在邊界上時(shí),

與x軸的交點(diǎn)A的橫坐標(biāo)

綜上所述,

故答案為:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教委為了讓廣大青少年學(xué)生走向操場(chǎng)、走進(jìn)自然、走到陽光下,積極參加體育鍛煉,啟動(dòng)了學(xué)生陽光體育運(yùn)動(dòng),其中有一項(xiàng)是短跑運(yùn)動(dòng),短跑運(yùn)動(dòng)可以鍛煉人的靈活性,增強(qiáng)人的爆發(fā)力,因此張明和李亮在課外活動(dòng)中報(bào)名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對(duì)他們兩人的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)和分析,請(qǐng)根據(jù)圖表中的信息解答以下問題:

成績(jī)統(tǒng)計(jì)分析表

1)張明第2次的成績(jī)?yōu)?/span>__________秒;

2)請(qǐng)補(bǔ)充完整上面的成績(jī)統(tǒng)計(jì)分析表;

3)現(xiàn)在從張明和李亮中選擇一名成績(jī)優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰? 請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正方形中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)是線段(不與,重合)的一個(gè)動(dòng)點(diǎn),過點(diǎn)交邊于點(diǎn)

(1)求證:

(2)如圖②,若正方形的邊長(zhǎng)為2,過于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值;若變化,請(qǐng)說明理由.

(3)如圖③,用等式表示線段,,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB的直徑,點(diǎn)PBA的延長(zhǎng)線上,PD于點(diǎn)D,過點(diǎn)B,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E

(Ⅰ)求證:AB=BE;

(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線有兩個(gè)不同的交點(diǎn).下列結(jié)論:①;②當(dāng)時(shí),有最小值;③方程有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則;其中正確的結(jié)論的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,點(diǎn)分別在軸,軸的正半軸上運(yùn)動(dòng),且,下列結(jié)論:

②當(dāng)時(shí)四邊形是正方形

③四邊形的面積和周長(zhǎng)都是定值

④連接,,則,其中正確的有(

A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情爆發(fā),某企業(yè)準(zhǔn)備轉(zhuǎn)型生產(chǎn)口罩.該企業(yè)在市場(chǎng)上物色到兩種生產(chǎn)口罩的設(shè)備,若采購2臺(tái)型設(shè)備,5臺(tái)型設(shè)備則共需要430萬元;若采購5臺(tái)型設(shè)備,2臺(tái)型設(shè)備則共需要550萬元.已知型設(shè)備每臺(tái)每天可以生產(chǎn)19萬片口罩;型設(shè)備每臺(tái)每天可以生產(chǎn)8萬片口罩.

1)求、兩型設(shè)備的采購單價(jià)分別是多少萬元/臺(tái)?

2)該企業(yè)準(zhǔn)備采購兩型設(shè)備共10臺(tái),但能用來采購設(shè)備的資金不超過700萬元,那么如何安排采購方案,用這些設(shè)備每天生產(chǎn)的口罩最多?每天最多可生產(chǎn)多少萬片口罩?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸的正半軸上,四邊形OACB是平行四邊形..反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,交BC的中點(diǎn)F.且

1)求k值和點(diǎn)C的坐標(biāo);

2)過點(diǎn)FEFOB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以PO、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案