25、先閱讀下面例題的解題過程,再解決后面的題目.
例已知9-6y-4y2=7,求2y2+3y+7的值.
解:由9-6y-4y2=7,得-6y-4y2=7-9,即6y+4y2=2,所以2y2+3y=1,所以2y2+3y+7=8.
題目:已知代數(shù)式14x+5-21x2的值是-2,求6x2-4x+5的值.
分析:根據(jù)已知條件可得到一個等式,對等式變形,可求出3x2-2x的值,再整體代入所求代數(shù)式即可.
解答:解:∵14x+5-21x2的值是-2,
∴14x-21x2=-7,
即2x-3x2=-1,
∴3x2-2x=1,
則6x2-4x+5=2×(3x2-2x)+5=7.
點(diǎn)評:做此類題的時候,應(yīng)先得到只含未知字母的代數(shù)式的值為多少,把要求的式子整理成包含那個代數(shù)式的形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、先閱讀下面例題的解題過程,再解答后面的題目.
例:已知代數(shù)式10-6y+3y2=1,求y2-2y+5的值.
解:由 10-6y+3y2=1
得-6y+3y2=1-10
即3y2-6y=-9
因此y2-2y=-3,所以 y2-2y+5=2
題目:已知代數(shù)式5x2-8+15x=-3,求2x2+6x-3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面例題的解題過程,再解答后面的題目.
例題:解方程 (x2-1)2-5(x2-1)+4=0
我們可以將x2-1視為一個整體,然后設(shè)y=x2-1,則 (x2-1)2=y2,原方程轉(zhuǎn)化為y2-5y+4=0.解得y1=1,y2=4.
當(dāng)y=1時,x2-1=1,所以x=±
2
;當(dāng)y=4時,x2-1=4,所以x=±
5

∴原方程的解為:x1=
2
,x2=-
2
,x3=
5
,x4=-
5

題目:用類似的方法試解方程(x2+x)2+(x2+x)=6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下面例題的解題過程,再解答后面的題目
例:∵a+
1
a
=
5
2
,
a2+
1
a2
+2=
25
4

a2+
1
a2
=
21
4

題目:求a4+
1
a4
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下面例題的解題過程,再解決后面的題目.
例已知9-6y-4y2=7,求2y2+3y+7的值.
由9-6y-4y2=7,得-6y-4y2=7-9,即6y+4y2=2,所以2y2+3y=1,所以2y2+3y+7=8.
題目:已知代數(shù)式14x+5-21x2的值是-2,求6x2-4x+5的值.

查看答案和解析>>

同步練習(xí)冊答案