【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C.
(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);
(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P 作 PD∥x 軸交 AB 于點(diǎn) D,PE∥y 軸交 AB 于點(diǎn) E,求 PD+PE 的最大值;
(3)如圖③,若點(diǎn) M 在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).
① ② ③
【答案】(1) y= , C(1,0);(2)6;(3) M的坐標(biāo)為(, )或(, ).
【解析】試題分析:(1)先求出A、B的坐標(biāo),然后把A、B的坐標(biāo)分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;
(2)先證明△PDE∽△OAB,得到PD=2PE.設(shè)P(m, ),則E(m, ),PD+PE=3PE,然后配方即可得到結(jié)論.
(3)分兩種情況討論:①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.求出圓心O1的坐標(biāo)和半徑,利用MO1=半徑即可得到結(jié)論.
②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.求出點(diǎn)O2的坐標(biāo),算出DM的長(zhǎng),即可得到結(jié)論.
試題解析:解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函數(shù)y=的圖像經(jīng)過A、B兩點(diǎn),∴,解得: ,
∴二次函數(shù)的關(guān)系式為y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設(shè)P(m, ),則E(m, ).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴當(dāng)m=2時(shí),PD+PE有最大值6.
(3)①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.
∵△ABC的外接圓O1的圓心在對(duì)稱軸上,設(shè)圓心O1的坐標(biāo)為(,-t).
∴=,解得:t=2,∴圓心O1的坐標(biāo)為(,-2),∴半徑為.
設(shè)M(,y).∵MO1=,∴,解得:y=,∴點(diǎn)M的坐標(biāo)為().
②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點(diǎn)O2的坐標(biāo)為 (,0),∴O2D=1,∴DM==,∴點(diǎn)M的坐標(biāo)為(, ).
綜上所述:點(diǎn)M的坐標(biāo)為(, )或(, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分塊計(jì)數(shù)法”:對(duì)有規(guī)律的圖形進(jìn)行計(jì)數(shù)時(shí),有些題可以采用“分塊計(jì)數(shù)”的方法.
例如:圖1有6個(gè)點(diǎn),圖2有12個(gè)點(diǎn),圖3有18個(gè)點(diǎn),……,按此規(guī)律,求圖10、圖n有多少個(gè)點(diǎn)?
我們將每個(gè)圖形分成完全相同的6塊,每塊黑點(diǎn)的個(gè)數(shù)相同(如圖),這樣圖1中黑點(diǎn)個(gè)數(shù)是6×1=6個(gè);圖2中黑點(diǎn)個(gè)數(shù)是6×2=12個(gè):圖3中黑點(diǎn)個(gè)數(shù)是6×3=18個(gè);所以容易求出圖10、圖n中黑點(diǎn)的個(gè)數(shù)分別是 、 .
請(qǐng)你參考以上“分塊計(jì)數(shù)法”,先將下面的點(diǎn)陣進(jìn)行分塊(畫在答題卡上),再完成以下問題:
(1)第5個(gè)點(diǎn)陣中有 個(gè)圓圈;第n個(gè)點(diǎn)陣中有 個(gè)圓圈.
(2)小圓圈的個(gè)數(shù)會(huì)等于271嗎?如果會(huì),請(qǐng)求出是第幾個(gè)點(diǎn)陣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)社會(huì)的發(fā)展,人民對(duì)于美好生活的追求越來越高,某社區(qū)為了了解家庭對(duì)于文化教育的消費(fèi)情況,隨機(jī)抽取部分家庭,對(duì)每戶家庭的文化教育年消費(fèi)金額進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
級(jí)別 | 家庭的文化教育消費(fèi)金額(元) | 戶數(shù) |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:
(1)本次被調(diào)查的家庭有___________戶,表中___________;
(2)在扇形統(tǒng)計(jì)圖中,組所在扇形的圓心角為多少度?
(3)這個(gè)社區(qū)有戶家庭,請(qǐng)你估計(jì)年文化教育消費(fèi)在元以上的家庭有多少戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長(zhǎng)為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊形為菱形,點(diǎn)為對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接.
(1)如圖1,求證:;
(2)如圖2,若,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形 ABCD 的對(duì)角線交于點(diǎn) E,且 AE=EC,BE=ED,以 AD 為直徑的半圓過點(diǎn) E,圓心 為 O.
(1)如圖①,求證:四邊形 ABCD 為菱形;
(2)如圖②,若 BC 的延長(zhǎng)線與半圓相切于點(diǎn) F,且直徑 AD=6,求弧AE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點(diǎn)C,使AC=AB;
②作∠ABM 的角平分線交AC于D點(diǎn);
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列四個(gè)條件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,從中任選三個(gè)條件能使△ABC≌△DEF的共有( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com