【題目】如圖,正方形OABC的邊長為6,點A、C分別在x軸,y軸的正半軸上,點D2,0)在OA上,POB上一動點,則PA+PD的最小值為__

【答案】

【解析】

過D點作關于OB的對稱點D′,連接D′A交OB于點P,由兩點之間線段最短可知D′A即為PA+PD的最小值,
由正方形的性質(zhì)可求出D′點的坐標,再根據(jù)OA=6可求出A點的坐標,利用兩點間的距離公式即可求出D′A的值.

解:過D點作關于OB的對稱點D′,連接D′A交OB于點P,由兩點之間線段最短可知D′A即為PA+PD的最小值,


∵D(2,0),四邊形OABC是正方形,
∴D′點的坐標為(0,2),A點坐標為(6,0),
∴D′A=,即PA+PD的最小值為2
故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】目前微信”、“支付寶”、“共享單車網(wǎng)購給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對你最認可的四大新生事物進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

(1)根據(jù)圖中信息求出m=   ,n=   ;

(2)請你幫助他們將這兩個統(tǒng)計圖補全;

(3)根據(jù)抽樣調(diào)查的結果,請估算全校2000名學生中,大約有多少人最認可微信這一新生事物?

(4)已知A、B兩位同學都最認可微信”,C同學最認可支付寶”D同學最認可網(wǎng)購從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點O,OEAB,OFCB,垂足分別是E、F.求證:OE=OF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為66萬元;本周已售出2輛A型車和1輛B型車,銷售額為42萬元.

(1)求每輛A型車和B型車的售價各為多少元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不超過84萬元.問最多可以購買多少輛B型號的新能源汽車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上 A,BC 三個點對應的數(shù)分別為 a,b,x,且 A,B 到-2 所對應的點的距離都等于 6,點 B在點 A 的右側.

1)請在數(shù)軸上表示點 A,B 位置,a= ,b=

2)請用含 x 的代數(shù)式表示 CB= ;

3)若點 C 在點 B 的左側,且 CB=8,點 A 以每秒 2 個單位長度的速度沿數(shù)軸向右運動,當 AC=2AB時,求點 A 移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將沿過點的直線折疊,使點落到邊上的處,折痕交邊于點,連接.

1)求證:四邊形是平行四邊形;

2)若平分,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖①,一次函數(shù) y x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y x2 bx c的圖像經(jīng)過 AB 兩點,與 x 軸交于另一點 C

(1)求二次函數(shù)的關系式及點 C 的坐標;

(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P PDx 軸交 AB 于點 DPEy 軸交 AB 于點 E,求 PDPE 的最大值;

(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標.

① ②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是個三角形,分別連接這個三角形三邊中點得到圖2,再分別連接圖2中間小三角形三邊的中點得到圖3

1中有_ __個三角形,圖2中有 __個三角形,圖3 中有 __個三角形;

按上面的方法繼續(xù)下去,第個圖形有________個三角形;(用含的式子表示)

時,圖形中有多少個三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)輛,自行車廠平均每天生產(chǎn)自行車輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃每天生產(chǎn)量相比有出入,下表是某周的自行車生產(chǎn)情況(超計劃生產(chǎn)量為正、不足計劃生產(chǎn)量為負,單位:輛)

星期

增將

根據(jù)記錄可知前三天共生產(chǎn)自行車 輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛;

若該廠實行按生產(chǎn)的自行車數(shù)量的多少計工資(即計件工資制).如果每生產(chǎn)一輛自行車可得人民幣元,那么該廠工人這一周的工資總額是多少元.

查看答案和解析>>

同步練習冊答案